Lehrstuhl für Bioelektronik, Physik-Department and ZNN/WSI, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany.
Nanotechnology. 2011 Jul 8;22(27):275301. doi: 10.1088/0957-4484/22/27/275301. Epub 2011 May 20.
A variety of polymerization methods for the assembly of elongated nanoribbons from rectangular DNA origami structures are investigated. The most efficient method utilizes single-stranded DNA oligonucleotides to bridge an intermolecular scaffold seam between origami monomers. This approach allows the fabrication of origami ribbons with lengths of several micrometers, which can be used for long-range ordered arrangement of proteins. It is quantitatively shown that the length distribution of origami ribbons obtained with this technique follows the theoretical prediction for a simple linear polymerization reaction. The design of flat single layer origami structures with constant crossover spacing inevitably results in local underwinding of the DNA helix, which leads to a global twist of the origami structures that also translates to the nanoribbons.
研究了多种将矩形 DNA 折纸结构组装成长纳米带的聚合方法。最有效的方法是利用单链 DNA 寡核苷酸在折纸单体之间的分子间支架缝中桥接。这种方法允许制造几微米长的折纸带,可用于蛋白质的长程有序排列。定量表明,该技术获得的折纸带的长度分布遵循简单线性聚合反应的理论预测。具有恒定交叉间隔的平面单层折纸结构的设计不可避免地导致 DNA 螺旋的局部欠绕,这导致折纸结构的整体扭曲,也转化为纳米带。