Suppr超能文献

基于DNA纳米技术的自下而上的自组装

Bottom-Up Self-Assembly Based on DNA Nanotechnology.

作者信息

Yan Xuehui, Huang Shujing, Wang Yong, Tang Yuanyuan, Tian Ye

机构信息

College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.

Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China.

出版信息

Nanomaterials (Basel). 2020 Oct 16;10(10):2047. doi: 10.3390/nano10102047.

Abstract

Manipulating materials at the atomic scale is one of the goals of the development of chemistry and materials science, as it provides the possibility to customize material properties; however, it still remains a huge challenge. Using DNA self-assembly, materials can be controlled at the nano scale to achieve atomic- or nano-scaled fabrication. The programmability and addressability of DNA molecules can be applied to realize the self-assembly of materials from the bottom-up, which is called DNA nanotechnology. DNA nanotechnology does not focus on the biological functions of DNA molecules, but combines them into motifs, and then assembles these motifs to form ordered two-dimensional (2D) or three-dimensional (3D) lattices. These lattices can serve as general templates to regulate the assembly of guest materials. In this review, we introduce three typical DNA self-assembly strategies in this field and highlight the significant progress of each. We also review the application of DNA self-assembly and propose perspectives in this field.

摘要

在原子尺度上操纵材料是化学和材料科学发展的目标之一,因为它提供了定制材料特性的可能性;然而,这仍然是一个巨大的挑战。利用DNA自组装,可以在纳米尺度上控制材料,以实现原子级或纳米级制造。DNA分子的可编程性和可寻址性可用于实现材料的自下而上自组装,这被称为DNA纳米技术。DNA纳米技术并不关注DNA分子的生物学功能,而是将它们组合成基序,然后组装这些基序以形成有序的二维(2D)或三维(3D)晶格。这些晶格可以作为通用模板来调节客体材料的组装。在本综述中,我们介绍了该领域三种典型的DNA自组装策略,并强调了每种策略的重大进展。我们还回顾了DNA自组装的应用,并提出了该领域的展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b08/7603033/6d59aa03e6b9/nanomaterials-10-02047-g001.jpg

相似文献

1
Bottom-Up Self-Assembly Based on DNA Nanotechnology.
Nanomaterials (Basel). 2020 Oct 16;10(10):2047. doi: 10.3390/nano10102047.
2
DNA-Grafted 3D Superlattice Self-Assembly.
Int J Mol Sci. 2021 Jul 15;22(14):7558. doi: 10.3390/ijms22147558.
3
DNA origami: an outstanding platform for functions in nanophotonics and cancer therapy.
Analyst. 2021 Mar 21;146(6):1807-1819. doi: 10.1039/d0an02160a. Epub 2021 Feb 17.
4
Self-Assembly of Heterogeneously Shaped Nanoparticles into Plasmonic Metamolecules on DNA Origami.
Chemistry. 2017 Oct 12;23(57):14177-14181. doi: 10.1002/chem.201703927. Epub 2017 Sep 13.
5
Layered-Crossover Tiles with Precisely Tunable Angles for 2D and 3D DNA Crystal Engineering.
J Am Chem Soc. 2018 Nov 7;140(44):14670-14676. doi: 10.1021/jacs.8b07180. Epub 2018 Oct 29.
6
Directional Assembly of Nanoparticles by DNA Shapes: Towards Designed Architectures and Functionality.
Top Curr Chem (Cham). 2020 Mar 27;378(2):36. doi: 10.1007/s41061-020-0301-0.
7
Molecular Recognition in the Colloidal World.
Acc Chem Res. 2017 Nov 21;50(11):2756-2766. doi: 10.1021/acs.accounts.7b00370. Epub 2017 Oct 6.
8
DNA nanostructure-directed assembly of metal nanoparticle superlattices.
J Nanopart Res. 2018;20(5):119. doi: 10.1007/s11051-018-4225-3. Epub 2018 Apr 27.
9
Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.
J Am Chem Soc. 2016 Jun 22;138(24):7733-40. doi: 10.1021/jacs.6b03966. Epub 2016 Jun 9.
10
Self-assembly of DNA origami for nanofabrication, biosensing, drug delivery, and computational storage.
iScience. 2023 Apr 10;26(5):106638. doi: 10.1016/j.isci.2023.106638. eCollection 2023 May 19.

引用本文的文献

2
Interpenetrated and Bridged Nanocylinders from Self-Assembled Star Block Copolymers.
Macromolecules. 2024 Jan 30;57(3):926-939. doi: 10.1021/acs.macromol.3c02088. eCollection 2024 Feb 13.
3
4
The wending rhombus: Self-assembling 3D DNA crystals.
Biophys J. 2022 Dec 20;121(24):4759-4765. doi: 10.1016/j.bpj.2022.08.019. Epub 2022 Aug 24.
5
Pairing nanoarchitectonics of oligodeoxyribonucleotides with complex diversity: concatemers and self-limited complexes.
RSC Adv. 2022 Feb 23;12(11):6416-6431. doi: 10.1039/d2ra00155a. eCollection 2022 Feb 22.

本文引用的文献

1
Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels.
Nat Mater. 2020 Jul;19(7):789-796. doi: 10.1038/s41563-019-0550-x. Epub 2020 Jan 13.
2
Making Engineered 3D DNA Crystals Robust.
J Am Chem Soc. 2019 Oct 9;141(40):15850-15855. doi: 10.1021/jacs.9b06613. Epub 2019 Sep 25.
3
Designing Higher Resolution Self-Assembled 3D DNA Crystals via Strand Terminus Modifications.
ACS Nano. 2019 Jul 23;13(7):7957-7965. doi: 10.1021/acsnano.9b02430. Epub 2019 Jul 2.
4
Complex wireframe DNA nanostructures from simple building blocks.
Nat Commun. 2019 Mar 6;10(1):1067. doi: 10.1038/s41467-019-08647-7.
5
Rational Design and Self-Assembly of Two-Dimensional, Dodecagonal DNA Quasicrystals.
J Am Chem Soc. 2019 Mar 13;141(10):4248-4251. doi: 10.1021/jacs.9b00843. Epub 2019 Mar 5.
6
Modulating Self-Assembly of DNA Crystals with Rationally Designed Agents.
Angew Chem Int Ed Engl. 2018 Dec 10;57(50):16529-16532. doi: 10.1002/anie.201809757. Epub 2018 Nov 8.
7
On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers.
Angew Chem Int Ed Engl. 2018 Jul 20;57(30):9470-9474. doi: 10.1002/anie.201802890. Epub 2018 Jun 19.
8
9
Biotechnological mass production of DNA origami.
Nature. 2017 Dec 6;552(7683):84-87. doi: 10.1038/nature24650.
10
A device that operates within a self-assembled 3D DNA crystal.
Nat Chem. 2017 Aug;9(8):824-827. doi: 10.1038/nchem.2745. Epub 2017 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验