Suppr超能文献

稀疏的低阶交互网络是高度相关和可学习的神经群体编码的基础。

Sparse low-order interaction network underlies a highly correlated and learnable neural population code.

机构信息

Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9679-84. doi: 10.1073/pnas.1019641108. Epub 2011 May 20.

Abstract

Information is carried in the brain by the joint activity patterns of large groups of neurons. Understanding the structure and function of population neural codes is challenging because of the exponential number of possible activity patterns and dependencies among neurons. We report here that for groups of ~100 retinal neurons responding to natural stimuli, pairwise-based models, which were highly accurate for small networks, are no longer sufficient. We show that because of the sparse nature of the neural code, the higher-order interactions can be easily learned using a novel model and that a very sparse low-order interaction network underlies the code of large populations of neurons. Additionally, we show that the interaction network is organized in a hierarchical and modular manner, which hints at scalability. Our results suggest that learnability may be a key feature of the neural code.

摘要

信息是由大量神经元的联合活动模式在大脑中传递的。由于可能的活动模式和神经元之间的依赖性呈指数级增长,因此理解群体神经编码的结构和功能具有挑战性。我们在这里报告,对于响应自然刺激的大约 100 个视网膜神经元的群体,基于成对的模型虽然对于小网络非常准确,但已经不再足够。我们表明,由于神经编码的稀疏性,更高阶的相互作用可以很容易地使用一种新模型来学习,并且一个非常稀疏的低阶相互作用网络是大群体神经元编码的基础。此外,我们表明,相互作用网络以分层和模块化的方式组织,这暗示了可扩展性。我们的结果表明,可学习性可能是神经编码的一个关键特征。

相似文献

2
The architecture of functional interaction networks in the retina.视网膜功能交互网络的结构。
J Neurosci. 2011 Feb 23;31(8):3044-54. doi: 10.1523/JNEUROSCI.3682-10.2011.
4
Inferring hidden structure in multilayered neural circuits.推断多层神经回路中的隐藏结构。
PLoS Comput Biol. 2018 Aug 23;14(8):e1006291. doi: 10.1371/journal.pcbi.1006291. eCollection 2018 Aug.
6
The structured 'low temperature' phase of the retinal population code.视网膜群体编码的结构化“低温”阶段。
PLoS Comput Biol. 2017 Oct 11;13(10):e1005792. doi: 10.1371/journal.pcbi.1005792. eCollection 2017 Oct.
8
Stimulus-dependent maximum entropy models of neural population codes.基于刺激的神经群体编码最大熵模型。
PLoS Comput Biol. 2013;9(3):e1002922. doi: 10.1371/journal.pcbi.1002922. Epub 2013 Mar 14.
9
Learning probabilistic neural representations with randomly connected circuits.用随机连接的电路学习概率神经网络表示。
Proc Natl Acad Sci U S A. 2020 Oct 6;117(40):25066-25073. doi: 10.1073/pnas.1912804117. Epub 2020 Sep 18.
10
Predicting synchronous firing of large neural populations from sequential recordings.从序贯记录中预测大型神经元群体的同步放电。
PLoS Comput Biol. 2021 Jan 28;17(1):e1008501. doi: 10.1371/journal.pcbi.1008501. eCollection 2021 Jan.

引用本文的文献

8
Theoretical foundations of studying criticality in the brain.研究大脑临界性的理论基础。
Netw Neurosci. 2022 Oct 1;6(4):1148-1185. doi: 10.1162/netn_a_00269. eCollection 2022.

本文引用的文献

1
The architecture of functional interaction networks in the retina.视网膜功能交互网络的结构。
J Neurosci. 2011 Feb 23;31(8):3044-54. doi: 10.1523/JNEUROSCI.3682-10.2011.
5
Prediction of spatiotemporal patterns of neural activity from pairwise correlations.从成对相关性预测神经活动的时空模式。
Phys Rev Lett. 2009 Apr 3;102(13):138101. doi: 10.1103/PhysRevLett.102.138101. Epub 2009 Apr 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验