Suppr超能文献

生理和生态特征的温度依赖性的系统变化。

Systematic variation in the temperature dependence of physiological and ecological traits.

机构信息

Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10591-6. doi: 10.1073/pnas.1015178108. Epub 2011 May 23.

Abstract

To understand the effects of temperature on biological systems, we compile, organize, and analyze a database of 1,072 thermal responses for microbes, plants, and animals. The unprecedented diversity of traits (n = 112), species (n = 309), body sizes (15 orders of magnitude), and habitats (all major biomes) in our database allows us to quantify novel features of the temperature response of biological traits. In particular, analysis of the rising component of within-species (intraspecific) responses reveals that 87% are fit well by the Boltzmann-Arrhenius model. The mean activation energy for these rises is 0.66 ± 0.05 eV, similar to the reported across-species (interspecific) value of 0.65 eV. However, systematic variation in the distribution of rise activation energies is evident, including previously unrecognized right skewness around a median of 0.55 eV. This skewness exists across levels of organization, taxa, trophic groups, and habitats, and it is partially explained by prey having increased trait performance at lower temperatures relative to predators, suggesting a thermal version of the life-dinner principle-stronger selection on running for your life than running for your dinner. For unimodal responses, habitat (marine, freshwater, and terrestrial) largely explains the mean temperature at which trait values are optimal but not variation around the mean. The distribution of activation energies for trait falls has a mean of 1.15 ± 0.39 eV (significantly higher than rises) and is also right-skewed. Our results highlight generalities and deviations in the thermal response of biological traits and help to provide a basis to predict better how biological systems, from cells to communities, respond to temperature change.

摘要

为了理解温度对生物系统的影响,我们编译、组织和分析了一个包含 1072 个微生物、植物和动物热反应的数据库。我们的数据库中包含前所未有的多样性的特征(n=112)、物种(n=309)、体型(15 个数量级)和栖息地(所有主要生物群系),这使我们能够量化生物特征对温度响应的新特征。特别是,对种内(种内)反应上升部分的分析表明,87%的反应符合玻尔兹曼-阿伦尼乌斯模型。这些上升的平均激活能为 0.66±0.05eV,与跨物种(种间)报告的 0.65eV 值相似。然而,上升激活能分布的系统变化是明显的,包括以前未被认识到的围绕中位数 0.55eV 的右偏态。这种偏态存在于组织、分类群、营养级和栖息地的各个层次,它部分解释了猎物相对于捕食者具有较低温度下更高的特征性能,这表明存在一种热版的“生命大餐原则”——相对于追逐晚餐,为了生存而奔跑的选择更强。对于单峰反应,栖息地(海洋、淡水和陆地)在很大程度上解释了特征值最佳的平均温度,但不能解释平均值周围的变化。特征下降的激活能分布的平均值为 1.15±0.39eV(显著高于上升),也呈右偏态。我们的研究结果突出了生物特征对温度响应的普遍性和偏差,并有助于为更好地预测从细胞到群落的生物系统对温度变化的响应提供基础。

相似文献

1
Systematic variation in the temperature dependence of physiological and ecological traits.生理和生态特征的温度依赖性的系统变化。
Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10591-6. doi: 10.1073/pnas.1015178108. Epub 2011 May 23.
8
Multi-taxa trait and functional responses to physical disturbance.多分类群性状及对物理干扰的功能响应。
J Anim Ecol. 2014 Nov;83(6):1542-52. doi: 10.1111/1365-2656.12249. Epub 2014 Jun 18.
9
Seasonal patterns in species diversity across biomes.生物群落物种多样性的季节性模式。
Ecology. 2019 Apr;100(4):e02627. doi: 10.1002/ecy.2627. Epub 2019 Mar 22.

引用本文的文献

7
Heat limits scale with metabolism in ectothermic animals.在变温动物中,热耐受限度与新陈代谢相关。
J Anim Ecol. 2025 Jun;94(6):1307-1316. doi: 10.1111/1365-2656.70042. Epub 2025 May 12.

本文引用的文献

2
MECHANISMS OF LARGE-SCALE EVOLUTIONARY TRENDS.大规模进化趋势的机制
Evolution. 1994 Dec;48(6):1747-1763. doi: 10.1111/j.1558-5646.1994.tb02211.x.
5
Evolution of thermal sensitivity of ectotherm performance.变温动物表现出的热敏感性的进化。
Trends Ecol Evol. 1989 May;4(5):131-5. doi: 10.1016/0169-5347(89)90211-5.
10
Why tropical forest lizards are vulnerable to climate warming.为什么热带森林蜥蜴易受气候变暖影响。
Proc Biol Sci. 2009 Jun 7;276(1664):1939-48. doi: 10.1098/rspb.2008.1957. Epub 2009 Mar 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验