Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA.
Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10591-6. doi: 10.1073/pnas.1015178108. Epub 2011 May 23.
To understand the effects of temperature on biological systems, we compile, organize, and analyze a database of 1,072 thermal responses for microbes, plants, and animals. The unprecedented diversity of traits (n = 112), species (n = 309), body sizes (15 orders of magnitude), and habitats (all major biomes) in our database allows us to quantify novel features of the temperature response of biological traits. In particular, analysis of the rising component of within-species (intraspecific) responses reveals that 87% are fit well by the Boltzmann-Arrhenius model. The mean activation energy for these rises is 0.66 ± 0.05 eV, similar to the reported across-species (interspecific) value of 0.65 eV. However, systematic variation in the distribution of rise activation energies is evident, including previously unrecognized right skewness around a median of 0.55 eV. This skewness exists across levels of organization, taxa, trophic groups, and habitats, and it is partially explained by prey having increased trait performance at lower temperatures relative to predators, suggesting a thermal version of the life-dinner principle-stronger selection on running for your life than running for your dinner. For unimodal responses, habitat (marine, freshwater, and terrestrial) largely explains the mean temperature at which trait values are optimal but not variation around the mean. The distribution of activation energies for trait falls has a mean of 1.15 ± 0.39 eV (significantly higher than rises) and is also right-skewed. Our results highlight generalities and deviations in the thermal response of biological traits and help to provide a basis to predict better how biological systems, from cells to communities, respond to temperature change.
为了理解温度对生物系统的影响,我们编译、组织和分析了一个包含 1072 个微生物、植物和动物热反应的数据库。我们的数据库中包含前所未有的多样性的特征(n=112)、物种(n=309)、体型(15 个数量级)和栖息地(所有主要生物群系),这使我们能够量化生物特征对温度响应的新特征。特别是,对种内(种内)反应上升部分的分析表明,87%的反应符合玻尔兹曼-阿伦尼乌斯模型。这些上升的平均激活能为 0.66±0.05eV,与跨物种(种间)报告的 0.65eV 值相似。然而,上升激活能分布的系统变化是明显的,包括以前未被认识到的围绕中位数 0.55eV 的右偏态。这种偏态存在于组织、分类群、营养级和栖息地的各个层次,它部分解释了猎物相对于捕食者具有较低温度下更高的特征性能,这表明存在一种热版的“生命大餐原则”——相对于追逐晚餐,为了生存而奔跑的选择更强。对于单峰反应,栖息地(海洋、淡水和陆地)在很大程度上解释了特征值最佳的平均温度,但不能解释平均值周围的变化。特征下降的激活能分布的平均值为 1.15±0.39eV(显著高于上升),也呈右偏态。我们的研究结果突出了生物特征对温度响应的普遍性和偏差,并有助于为更好地预测从细胞到群落的生物系统对温度变化的响应提供基础。