Suppr超能文献

探索偏瘫性中风患者运动阶段的机器学习分类:一项对照性脑电图-经颅直流电刺激研究

Exploring Machine Learning Classification of Movement Phases in Hemiparetic Stroke Patients: A Controlled EEG-tDCS Study.

作者信息

Suresh Rishishankar E, Zobaer M S, Triano Matthew J, Saway Brian F, Grewal Parneet, Rowland Nathan C

机构信息

College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.

MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, Charleston, SC 29425, USA.

出版信息

Brain Sci. 2024 Dec 29;15(1):28. doi: 10.3390/brainsci15010028.

Abstract

BACKGROUND/OBJECTIVES: Noninvasive brain stimulation (NIBS) can boost motor recovery after a stroke. Certain movement phases are more responsive to NIBS, so a system that auto-detects these phases would optimize stimulation timing. This study assessed the effectiveness of various machine learning models in identifying movement phases in hemiparetic individuals undergoing simultaneous NIBS and EEG recordings. We hypothesized that transcranial direct current stimulation (tDCS), a form of NIBS, would enhance EEG signals related to movement phases and improve classification accuracy compared to sham stimulation.

METHODS

EEG data from 10 chronic stroke patients and 11 healthy controls were recorded before, during, and after tDCS. Eight machine learning algorithms and five ensemble methods were used to classify two movement phases (hold posture and reaching) during each of these periods. Data preprocessing included z-score normalization and frequency band power binning.

RESULTS

In chronic stroke participants who received active tDCS, the classification accuracy for hold vs. reach phases increased from pre-stimulation to the late intra-stimulation period (72.2% to 75.2%, < 0.0001). Late active tDCS surpassed late sham tDCS classification (75.2% vs. 71.5%, < 0.0001). Linear discriminant analysis was the most accurate (74.6%) algorithm with the shortest training time (0.9 s). Among ensemble methods, low gamma frequency (30-50 Hz) achieved the highest accuracy (74.5%), although this result did not achieve statistical significance for actively stimulated chronic stroke participants.

CONCLUSIONS

Machine learning algorithms showed enhanced movement phase classification during active tDCS in chronic stroke participants. These results suggest their feasibility for real-time movement detection in neurorehabilitation, including brain-computer interfaces for stroke recovery.

摘要

背景/目的:无创脑刺激(NIBS)可促进中风后的运动恢复。特定的运动阶段对NIBS反应更敏感,因此,一个能自动检测这些阶段的系统将优化刺激时机。本研究评估了各种机器学习模型在识别同时接受NIBS和脑电图记录的偏瘫个体运动阶段方面的有效性。我们假设,经颅直流电刺激(tDCS)作为NIBS的一种形式,与假刺激相比,将增强与运动阶段相关的脑电图信号并提高分类准确率。

方法

在tDCS之前、期间和之后记录了10名慢性中风患者和11名健康对照者的脑电图数据。使用八种机器学习算法和五种集成方法对这些时期内的两个运动阶段(握持姿势和伸展)进行分类。数据预处理包括z分数归一化和频段功率分箱。

结果

在接受主动tDCS的慢性中风参与者中,握持与伸展阶段的分类准确率从刺激前到刺激后期有所提高(72.2%至75.2%,<0.0001)。主动tDCS后期的分类准确率超过了假tDCS后期(75.2%对71.5%,<0.0001)。线性判别分析是最准确的(74.6%)算法,训练时间最短(0.9秒)。在集成方法中,低伽马频率(30 - 50赫兹)达到了最高准确率(74.5%),尽管这一结果对于接受主动刺激的慢性中风参与者而言未达到统计学意义。

结论

机器学习算法在慢性中风参与者接受主动tDCS期间显示出增强的运动阶段分类能力。这些结果表明了它们在神经康复中进行实时运动检测的可行性,包括用于中风恢复的脑机接口。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9eb3/11764431/834369760233/brainsci-15-00028-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验