Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch F-67400, France.
Cell. 2011 May 27;145(5):650-63. doi: 10.1016/j.cell.2011.05.011.
One of the most striking features of the human vertebral column is its periodic organization along the anterior-posterior axis. This pattern is established when segments of vertebrates, called somites, bud off at a defined pace from the anterior tip of the embryo's presomitic mesoderm (PSM). To trigger this rhythmic production of somites, three major signaling pathways--Notch, Wnt/β-catenin, and fibroblast growth factor (FGF)--integrate into a molecular network that generates a traveling wave of gene expression along the embryonic axis, called the "segmentation clock." Recent systems approaches have begun identifying specific signaling circuits within the network that set the pace of the oscillations, synchronize gene expression cycles in neighboring cells, and contribute to the robustness and bilateral symmetry of somite formation. These findings establish a new model for vertebrate segmentation and provide a conceptual framework to explain human diseases of the spine, such as congenital scoliosis.
人体脊柱最显著的特征之一是其沿前后轴的周期性组织。这种模式是在脊椎动物的节段,称为体节,以确定的速度从胚胎前体节中胚层(PSM)的前端芽生时建立的。为了触发这种体节的有节奏产生,三个主要的信号通路 - Notch、Wnt/β-catenin 和成纤维细胞生长因子(FGF)- 整合到一个分子网络中,该网络沿着胚胎轴产生基因表达的传播波,称为“分节时钟”。最近的系统方法已经开始识别网络内特定的信号通路,这些通路设定了振荡的速度,使相邻细胞的基因表达周期同步,并有助于体节形成的稳健性和双侧对称性。这些发现为脊椎动物的分节建立了一个新的模型,并提供了一个概念框架来解释脊柱的人类疾病,如先天性脊柱侧凸。