Suppr超能文献

脊椎动物的分节:从循环基因网络到脊柱侧凸。

Vertebrate segmentation: from cyclic gene networks to scoliosis.

机构信息

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch F-67400, France.

出版信息

Cell. 2011 May 27;145(5):650-63. doi: 10.1016/j.cell.2011.05.011.

Abstract

One of the most striking features of the human vertebral column is its periodic organization along the anterior-posterior axis. This pattern is established when segments of vertebrates, called somites, bud off at a defined pace from the anterior tip of the embryo's presomitic mesoderm (PSM). To trigger this rhythmic production of somites, three major signaling pathways--Notch, Wnt/β-catenin, and fibroblast growth factor (FGF)--integrate into a molecular network that generates a traveling wave of gene expression along the embryonic axis, called the "segmentation clock." Recent systems approaches have begun identifying specific signaling circuits within the network that set the pace of the oscillations, synchronize gene expression cycles in neighboring cells, and contribute to the robustness and bilateral symmetry of somite formation. These findings establish a new model for vertebrate segmentation and provide a conceptual framework to explain human diseases of the spine, such as congenital scoliosis.

摘要

人体脊柱最显著的特征之一是其沿前后轴的周期性组织。这种模式是在脊椎动物的节段,称为体节,以确定的速度从胚胎前体节中胚层(PSM)的前端芽生时建立的。为了触发这种体节的有节奏产生,三个主要的信号通路 - Notch、Wnt/β-catenin 和成纤维细胞生长因子(FGF)- 整合到一个分子网络中,该网络沿着胚胎轴产生基因表达的传播波,称为“分节时钟”。最近的系统方法已经开始识别网络内特定的信号通路,这些通路设定了振荡的速度,使相邻细胞的基因表达周期同步,并有助于体节形成的稳健性和双侧对称性。这些发现为脊椎动物的分节建立了一个新的模型,并提供了一个概念框架来解释脊柱的人类疾病,如先天性脊柱侧凸。

相似文献

1
Vertebrate segmentation: from cyclic gene networks to scoliosis.
Cell. 2011 May 27;145(5):650-63. doi: 10.1016/j.cell.2011.05.011.
3
Establishment of Hox vertebral identities in the embryonic spine precursors.
Curr Top Dev Biol. 2009;88:201-34. doi: 10.1016/S0070-2153(09)88007-1.
4
Segmental patterning of the vertebrate embryonic axis.
Nat Rev Genet. 2008 May;9(5):370-82. doi: 10.1038/nrg2320.
5
Wnt3a plays a major role in the segmentation clock controlling somitogenesis.
Dev Cell. 2003 Mar;4(3):395-406. doi: 10.1016/s1534-5807(03)00055-8.
6
Signalling dynamics in vertebrate segmentation.
Nat Rev Mol Cell Biol. 2014 Nov;15(11):709-21. doi: 10.1038/nrm3891.
7
The vertebrate segmentation clock.
J Anat. 2001 Jul-Aug;199(Pt 1-2):169-75. doi: 10.1046/j.1469-7580.2001.19910169.x.
8
The segmentation clock: converting embryonic time into spatial pattern.
Science. 2003 Jul 18;301(5631):328-30. doi: 10.1126/science.1085887.
9
Somite boundary determination in normal and clock-less vertebrate embryos.
Dev Growth Differ. 2020 Apr;62(3):177-187. doi: 10.1111/dgd.12655. Epub 2020 Feb 28.
10
Hopf bifurcation in the presomitic mesoderm during the mouse segmentation.
J Theor Biol. 2009 Jul 7;259(1):176-89. doi: 10.1016/j.jtbi.2009.02.007. Epub 2009 Feb 21.

引用本文的文献

6
Substrate Rigidity Modulates Segmentation Clock Dynamics in Isolated Presomitic Mesoderm Cells.
bioRxiv. 2024 Jul 4:2024.07.02.601712. doi: 10.1101/2024.07.02.601712.
7
Notochord segmentation in zebrafish controlled by iterative mechanical signaling.
Dev Cell. 2024 Jul 22;59(14):1860-1875.e5. doi: 10.1016/j.devcel.2024.04.013. Epub 2024 May 1.
8
Core planar cell polarity genes and in predisposition to congenital vertebral malformations.
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2310283121. doi: 10.1073/pnas.2310283121. Epub 2024 Apr 26.
10
Collective intelligence: A unifying concept for integrating biology across scales and substrates.
Commun Biol. 2024 Mar 28;7(1):378. doi: 10.1038/s42003-024-06037-4.

本文引用的文献

1
Brachyury establishes the embryonic mesodermal progenitor niche.
Genes Dev. 2010 Dec 15;24(24):2778-83. doi: 10.1101/gad.1962910.
2
Automatic reconstruction of the mouse segmentation network from an experimental evidence database.
Biosystems. 2010 Oct;102(1):16-21. doi: 10.1016/j.biosystems.2010.07.013. Epub 2010 Aug 2.
3
Segment number and axial identity in a segmentation clock period mutant.
Curr Biol. 2010 Jul 27;20(14):1254-8. doi: 10.1016/j.cub.2010.05.071. Epub 2010 Jul 15.
4
Intercellular coupling regulates the period of the segmentation clock.
Curr Biol. 2010 Jul 27;20(14):1244-53. doi: 10.1016/j.cub.2010.06.034. Epub 2010 Jul 15.
5
Sonic hedgehog in temporal control of somite formation.
Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12907-12. doi: 10.1073/pnas.1000979107. Epub 2010 Jul 1.
6
A random cell motility gradient downstream of FGF controls elongation of an amniote embryo.
Nature. 2010 Jul 8;466(7303):248-52. doi: 10.1038/nature09151.
7
Pilot assessment of a radiologic classification system for segmentation defects of the vertebrae.
Am J Med Genet A. 2010 Jun;152A(6):1357-71. doi: 10.1002/ajmg.a.33361.
8
Emergence of traveling waves in the zebrafish segmentation clock.
Development. 2010 May;137(10):1595-9. doi: 10.1242/dev.046888. Epub 2010 Apr 14.
9
Analysis of Ripply1/2-deficient mouse embryos reveals a mechanism underlying the rostro-caudal patterning within a somite.
Dev Biol. 2010 Jun 15;342(2):134-45. doi: 10.1016/j.ydbio.2010.03.015. Epub 2010 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验