Suppr超能文献

枯草芽孢杆菌表面的微细胞体组装。

Assembly of minicellulosomes on the surface of Bacillus subtilis.

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive, Los Angeles, CA 90095-1570, USA.

出版信息

Appl Environ Microbiol. 2011 Jul;77(14):4849-58. doi: 10.1128/AEM.02599-10. Epub 2011 May 27.

Abstract

To cost-efficiently produce biofuels, new methods are needed to convert lignocellulosic biomass into fermentable sugars. One promising approach is to degrade biomass using cellulosomes, which are surface-displayed multicellulase-containing complexes present in cellulolytic Clostridium and Ruminococcus species. In this study we created cellulolytic strains of Bacillus subtilis that display one or more cellulase enzymes. Proteins containing the appropriate cell wall sorting signal are covalently anchored to the peptidoglycan by coexpressing them with the Bacillus anthracis sortase A (SrtA) transpeptidase. This approach was used to covalently attach the Cel8A endoglucanase from Clostridium thermocellum to the cell wall. In addition, a Cel8A-dockerin fusion protein was anchored on the surface of B. subtilis via noncovalent interactions with a cell wall-attached cohesin module. We also demonstrate that it is possible to assemble multienzyme complexes on the cell surface. A three-enzyme-containing minicellulosome was displayed on the cell surface; it consisted of a cell wall-attached scaffoldin protein noncovalently bound to three cellulase-dockerin fusion proteins that were produced in Escherichia coli. B. subtilis has a robust genetic system and is currently used in a wide range of industrial processes. Thus, grafting larger, more elaborate minicellulosomes onto the surface of B. subtilis may yield cellulolytic bacteria with increased potency that can be used to degrade biomass.

摘要

为了高效地生产生物燃料,需要新的方法将木质纤维素生物质转化为可发酵糖。一种很有前途的方法是使用细胞表面展示的多酶纤维素酶复合物——纤维素酶体来降解生物质,这种复合物存在于纤维素分解梭菌和瘤胃球菌等产甲烷古菌中。在本研究中,我们构建了能够表达一种或多种纤维素酶的枯草芽孢杆菌工程菌。含有适当细胞壁分拣信号的蛋白质通过与炭疽芽孢杆菌 SrtA 转肽酶(SrtA)共表达被共价锚定到肽聚糖上。该方法用于将来自嗜热梭菌的 Cel8A 内切葡聚糖酶共价连接到细胞壁上。此外,Cel8A-衔接蛋白融合蛋白通过与细胞壁结合的粘着模块的非共价相互作用锚定在枯草芽孢杆菌表面。我们还证明了在细胞表面组装多酶复合物是可行的。一个包含三种酶的小型细胞表面展示纤维素酶体由细胞壁结合的支架蛋白通过非共价键与在大肠杆菌中产生的三种纤维素酶-衔接蛋白融合蛋白结合组成。枯草芽孢杆菌具有强大的遗传系统,目前广泛应用于各种工业过程。因此,将更大、更复杂的小型细胞表面展示纤维素酶体嫁接到枯草芽孢杆菌表面可能会产生具有更高活性的纤维素降解菌,可用于降解生物质。

相似文献

1
Assembly of minicellulosomes on the surface of Bacillus subtilis.
Appl Environ Microbiol. 2011 Jul;77(14):4849-58. doi: 10.1128/AEM.02599-10. Epub 2011 May 27.
2
Engineering microbial surfaces to degrade lignocellulosic biomass.
Bioengineered. 2014 Mar-Apr;5(2):96-106. doi: 10.4161/bioe.27461. Epub 2013 Dec 18.
4
Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides.
Nat Rev Microbiol. 2017 Feb;15(2):83-95. doi: 10.1038/nrmicro.2016.164. Epub 2016 Dec 12.
5
Diverse specificity of cellulosome attachment to the bacterial cell surface.
Sci Rep. 2016 Dec 7;6:38292. doi: 10.1038/srep38292.
7
Constructing a yeast to express the largest cellulosome complex on the cell surface.
Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2385-2394. doi: 10.1073/pnas.1916529117. Epub 2020 Jan 17.
10
Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae.
FEMS Yeast Res. 2009 Dec;9(8):1236-49. doi: 10.1111/j.1567-1364.2009.00564.x. Epub 2009 Aug 6.

引用本文的文献

2
Analysis of Beijing Douzhir Microbiota by High-Throughput Sequencing and Isolation of Acidogenic, Starch-Flocculating Strains.
Front Microbiol. 2018 May 29;9:1142. doi: 10.3389/fmicb.2018.01142. eCollection 2018.
4
A parts list for fungal cellulosomes revealed by comparative genomics.
Nat Microbiol. 2017 May 30;2:17087. doi: 10.1038/nmicrobiol.2017.87.
5
Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides.
Nat Rev Microbiol. 2017 Feb;15(2):83-95. doi: 10.1038/nrmicro.2016.164. Epub 2016 Dec 12.
7
A combined cell-consortium approach for lignocellulose degradation by specialized Lactobacillus plantarum cells.
Biotechnol Biofuels. 2014 Jul 24;7:112. doi: 10.1186/1754-6834-7-112. eCollection 2014.
8
Challenges and advances in the heterologous expression of cellulolytic enzymes: a review.
Biotechnol Biofuels. 2014 Oct 18;7(1):135. doi: 10.1186/s13068-014-0135-5. eCollection 2014.
10
Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers' tricks.
Comput Struct Biotechnol J. 2012 Nov 8;3:e201210007. doi: 10.5936/csbj.201210007. eCollection 2012.

本文引用的文献

1
Extremophile-inspired strategies for enzymatic biomass saccharification.
Environ Technol. 2010 Jul-Aug;31(8-9):1005-15. doi: 10.1080/09593330903536113.
2
Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates.
Annu Rev Biochem. 2010;79:655-81. doi: 10.1146/annurev-biochem-091208-085603.
3
Thermostable enzymes as biocatalysts in the biofuel industry.
Adv Appl Microbiol. 2010;70:1-55. doi: 10.1016/S0065-2164(10)70001-0. Epub 2010 Mar 6.
4
Synthesis, regulation and utilization of lignocellulosic biomass.
Plant Biotechnol J. 2010 Apr;8(3):244-62. doi: 10.1111/j.1467-7652.2009.00481.x. Epub 2010 Jan 8.
5
Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol.
Appl Environ Microbiol. 2010 Feb;76(4):1251-60. doi: 10.1128/AEM.01687-09. Epub 2009 Dec 18.
6
Liquid hot water pretreatment of cellulosic biomass.
Methods Mol Biol. 2009;581:93-102. doi: 10.1007/978-1-60761-214-8_7.
7
Pretreatment of biomass by aqueous ammonia for bioethanol production.
Methods Mol Biol. 2009;581:79-91. doi: 10.1007/978-1-60761-214-8_6.
9
Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae.
FEMS Yeast Res. 2009 Dec;9(8):1236-49. doi: 10.1111/j.1567-1364.2009.00564.x. Epub 2009 Aug 6.
10
Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production.
Appl Environ Microbiol. 2009 Oct;75(19):6087-93. doi: 10.1128/AEM.01538-09. Epub 2009 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验