Suppr超能文献

一种用于理解类肉瘤病动态的计算机建模方法。

An in silico modeling approach to understanding the dynamics of sarcoidosis.

机构信息

Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America.

出版信息

PLoS One. 2011;6(5):e19544. doi: 10.1371/journal.pone.0019544. Epub 2011 May 27.

Abstract

BACKGROUND

Sarcoidosis is a polygenic disease with diverse phenotypic presentations characterized by an abnormal antigen-mediated Th1 type immune response. At present, progress towards understanding sarcoidosis disease mechanisms and the development of novel treatments is limited by constraints attendant to conducting human research in a rare disease in the absence of relevant animal models. We sought to develop a computational model to enhance our understanding of the pathological mechanisms of and predict potential treatments of sarcoidosis.

METHODOLOGY/RESULTS: Based upon the literature, we developed a computational model of known interactions between essential immune cells (antigen-presenting macrophages, effector and regulatory T cells) and cytokine mediators (IL-2, TNFα, IFNγ) of granulomatous inflammation during sarcoidosis. The dynamics of these interactions are described by a set of ordinary differential equations. The model predicts bistable switching behavior which is consistent with normal (self-limited) and "sarcoidosis-like" (sustained) activation of the inflammatory components of the system following a single antigen challenge. By perturbing the influence of model components using inhibitors of the cytokine mediators, distinct clinically relevant disease phenotypes were represented. Finally, the model was shown to be useful for pre-clinical testing of therapies based upon molecular targets and dose-effect relationships.

CONCLUSIONS/SIGNIFICANCE: Our work illustrates a dynamic computer simulation of granulomatous inflammation scenarios that is useful for the investigation of disease mechanisms and for pre-clinical therapeutic testing. In lieu of relevant in vitro or animal surrogates, our model may provide for the screening of potential therapies for specific sarcoidosis disease phenotypes in advance of expensive clinical trials.

摘要

背景

结节病是一种多基因疾病,具有多种表型表现,其特征是异常的抗原介导的 Th1 型免疫反应。目前,由于缺乏相关的动物模型,在罕见疾病中进行人类研究存在限制,这限制了我们对结节病发病机制的理解和新疗法的开发进展。我们试图开发一种计算模型,以增强我们对结节病发病机制的理解并预测潜在的治疗方法。

方法/结果:基于文献,我们开发了一个计算模型,用于描述结节病期间肉芽肿炎症中已知的免疫细胞(抗原呈递巨噬细胞、效应和调节性 T 细胞)和细胞因子介质(IL-2、TNFα、IFNγ)之间的相互作用。这些相互作用的动态由一组常微分方程描述。该模型预测双稳态切换行为,这与单一抗原挑战后系统炎症成分的正常(自限性)和“结节病样”(持续)激活一致。通过使用细胞因子介质抑制剂来干扰模型组件的影响,可以代表不同的临床相关疾病表型。最后,该模型被证明可用于基于分子靶点和剂量-效应关系的临床前治疗测试。

结论/意义:我们的工作说明了一种用于研究疾病机制和临床前治疗测试的有用的肉芽肿炎症场景的动态计算机模拟。在缺乏相关的体外或动物替代物的情况下,我们的模型可以在昂贵的临床试验之前筛选针对特定结节病疾病表型的潜在治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9002/3103504/ee1d8e74bc6e/pone.0019544.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验