Suppr超能文献

鞭毛蛋白转运和细菌鞭毛生长的理论和计算研究。

Theoretical and computational investigation of flagellin translocation and bacterial flagellum growth.

机构信息

Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

出版信息

Biophys J. 2011 Jun 8;100(11):2548-56. doi: 10.1016/j.bpj.2011.04.036.

Abstract

The bacterial flagellum is a self-assembling filament, which bacteria use for swimming. It is built from tens of thousands of flagellin monomers in a self-assembly process that involves translocation of the monomers through the flagellar interior, a channel, to the growing tip. Flagellum monomers are pumped into the filament at the base, move unfolded along the channel and then bind to the tip of the filament, thereby extending the growing flagellum. The flagellin translocation process, due to the flagellum maximum length of 20 μm, is an extreme example of protein transport through channels. Here, we derive a model for flagellin transport through the long confining channel, testing the key assumptions of the model through molecular dynamics simulations that also furnish system parameters needed for quantitative description. Together, mathematical model and molecular dynamics simulations explain why the growth rate of flagellar filaments decays exponentially with filament length and why flagellum growth ceases at a certain maximum length.

摘要

细菌鞭毛是一种自组装的纤维,细菌用它来游动。它由成千上万的鞭毛蛋白单体在一个自组装过程中构成,这个过程涉及到单体通过鞭毛内部的通道向生长的顶端进行易位。鞭毛单体在底部被泵入纤维,在通道中展开并沿着通道移动,然后与纤维的顶端结合,从而延长正在生长的鞭毛。由于鞭毛的最大长度为 20μm,因此鞭毛蛋白易位过程是蛋白质通过通道进行运输的一个极端例子。在这里,我们通过分子动力学模拟为鞭毛蛋白在长约束通道中的运输推导出一个模型,通过分子动力学模拟测试模型的关键假设,同时还提供了定量描述所需的系统参数。数学模型和分子动力学模拟共同解释了为什么鞭毛纤维的生长速率随纤维长度呈指数衰减,以及为什么鞭毛的生长会在某个最大长度处停止。

相似文献

7

引用本文的文献

6
Molecular dynamics simulation of bacterial flagella.细菌鞭毛的分子动力学模拟
Biophys Rev. 2018 Apr;10(2):617-629. doi: 10.1007/s12551-017-0338-7. Epub 2017 Nov 27.
10
Type III secretion systems: the bacterial flagellum and the injectisome.III型分泌系统:细菌鞭毛与注射体。
Philos Trans R Soc Lond B Biol Sci. 2015 Oct 5;370(1679). doi: 10.1098/rstb.2015.0020.

本文引用的文献

2
The roles of pore ring and plug in the SecY protein-conducting channel.孔环和塞子在SecY蛋白传导通道中的作用。
J Gen Physiol. 2008 Dec;132(6):709-19. doi: 10.1085/jgp.200810062. Epub 2008 Nov 10.
3
How static is static friction?静摩擦力的大小是固定不变的吗?
Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13187-8. doi: 10.1073/pnas.0807273105. Epub 2008 Sep 3.
5
Translocation of proteins into mitochondria.蛋白质向线粒体的转运。
Annu Rev Biochem. 2007;76:723-49. doi: 10.1146/annurev.biochem.76.052705.163409.
6
Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum.旋转细菌鞭毛的粗粒度分子动力学模拟。
Biophys J. 2006 Dec 15;91(12):4589-97. doi: 10.1529/biophysj.106.093443. Epub 2006 Sep 22.
8
Simulation of polymer translocation through protein channels.聚合物通过蛋白质通道转运的模拟。
Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5273-8. doi: 10.1073/pnas.0510725103. Epub 2006 Mar 27.
9
Nanospring behaviour of ankyrin repeats.锚蛋白重复序列的纳米弹簧行为。
Nature. 2006 Mar 9;440(7081):246-9. doi: 10.1038/nature04437. Epub 2006 Jan 15.
10
Protein translocation across biological membranes.蛋白质跨生物膜转运。
Science. 2005 Dec 2;310(5753):1452-6. doi: 10.1126/science.1113752.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验