Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
Biophys J. 2011 Jun 8;100(11):2548-56. doi: 10.1016/j.bpj.2011.04.036.
The bacterial flagellum is a self-assembling filament, which bacteria use for swimming. It is built from tens of thousands of flagellin monomers in a self-assembly process that involves translocation of the monomers through the flagellar interior, a channel, to the growing tip. Flagellum monomers are pumped into the filament at the base, move unfolded along the channel and then bind to the tip of the filament, thereby extending the growing flagellum. The flagellin translocation process, due to the flagellum maximum length of 20 μm, is an extreme example of protein transport through channels. Here, we derive a model for flagellin transport through the long confining channel, testing the key assumptions of the model through molecular dynamics simulations that also furnish system parameters needed for quantitative description. Together, mathematical model and molecular dynamics simulations explain why the growth rate of flagellar filaments decays exponentially with filament length and why flagellum growth ceases at a certain maximum length.
细菌鞭毛是一种自组装的纤维,细菌用它来游动。它由成千上万的鞭毛蛋白单体在一个自组装过程中构成,这个过程涉及到单体通过鞭毛内部的通道向生长的顶端进行易位。鞭毛单体在底部被泵入纤维,在通道中展开并沿着通道移动,然后与纤维的顶端结合,从而延长正在生长的鞭毛。由于鞭毛的最大长度为 20μm,因此鞭毛蛋白易位过程是蛋白质通过通道进行运输的一个极端例子。在这里,我们通过分子动力学模拟为鞭毛蛋白在长约束通道中的运输推导出一个模型,通过分子动力学模拟测试模型的关键假设,同时还提供了定量描述所需的系统参数。数学模型和分子动力学模拟共同解释了为什么鞭毛纤维的生长速率随纤维长度呈指数衰减,以及为什么鞭毛的生长会在某个最大长度处停止。