Istituto Superiore di Sanità, Department of Environment and Prevention, Rome, Italy.
Anal Chim Acta. 2011 Jul 18;698(1-2):6-13. doi: 10.1016/j.aca.2011.04.052. Epub 2011 May 5.
Mass interferences, caused by atomic or polyatomic species and having the same mass/charge ratio of the analyte, can be a severe limit for a reliable assay of trace and ultratrace elements by ICP-MS. The DRC™ technology uses a reaction gas to overcome these interferences. Reactions of charge exchange, atom transfer, adduct formation, condensation and analyte association/condensation are the main mechanisms. Interfering ions tend to react with the gas exothermally, while, the analyte reacts endothermally. Selecting the most appropriate reaction gas in DRC-ICP-MS is the very critical point for the determination of strongly interfered elements. A careful evaluation of the reaction mechanisms and the chemistry involved are required. The DRC allows the use of different gases, among them, ammonia (NH(3)), methane (CH(4)), hydrogen (H(2)) and oxygen (O(2)) are the most known, but there are other potentially useful gases like nitrous oxide (N(2)O), nitrogen oxide (NO), carbon dioxide (CO(2)), fluoromethane (CH(3)F), sulphur hexafluoride (SF(6)) and carbon disulfide (CS(2)). This paper provides a review on the analytical challenges for a reliable assay of As, Cr, Se and V by DRC-ICP-MS and illustrates different approaches and mechanisms involved in the analysis of polymers, biological fluids (serum, urine and whole blood), rock, soil and particulate matter.
基质干扰,由原子或多原子物种引起,与分析物具有相同的质量/电荷比,可能是 ICP-MS 可靠测定痕量和超痕量元素的严重限制。DRC™ 技术使用反应气体来克服这些干扰。电荷交换、原子转移、加合物形成、冷凝和分析物缔合/冷凝等反应是主要机制。干扰离子倾向于与气体放热反应,而分析物则吸热反应。在 DRC-ICP-MS 中选择最合适的反应气体是测定强干扰元素的关键点。需要仔细评估反应机制和涉及的化学。DRC 允许使用不同的气体,其中,氨 (NH(3))、甲烷 (CH(4))、氢 (H(2)) 和氧 (O(2)) 是最常见的,但还有其他潜在有用的气体,如一氧化二氮 (N(2)O)、氮氧化物 (NO)、二氧化碳 (CO(2))、氟甲烷 (CH(3)F)、六氟化硫 (SF(6)) 和二硫化碳 (CS(2))。本文综述了通过 DRC-ICP-MS 可靠测定砷、铬、硒和钒的分析挑战,并说明了聚合物、生物流体(血清、尿液和全血)、岩石、土壤和颗粒物分析中涉及的不同方法和机制。