Public Health Informatics Group, Kingston, Frontenac, Lennox & Addington Public Health, 221 Portsmouth Avenue, Kingston, ON, Canada K7M 1V5.
J Environ Public Health. 2011;2011:750236. doi: 10.1155/2011/750236. Epub 2011 May 4.
This paper compares syndromic surveillance and predictive weather-based models for estimating emergency department (ED) visits for Heat-Related Illness (HRI). A retrospective time-series analysis of weather station observations and ICD-coded HRI ED visits to ten hospitals in south eastern Ontario, Canada, was performed from April 2003 to December 2008 using hospital data from the National Ambulatory Care Reporting System (NACRS) database, ED patient chief complaint data collected by a syndromic surveillance system, and weather data from Environment Canada. Poisson regression and Fast Orthogonal Search (FOS), a nonlinear time series modeling technique, were used to construct models for the expected number of HRI ED visits using weather predictor variables (temperature, humidity, and wind speed). Estimates of HRI visits from regression models using both weather variables and visit counts captured by syndromic surveillance as predictors were slightly more highly correlated with NACRS HRI ED visits than either regression models using only weather predictors or syndromic surveillance counts.
本文比较了基于症候群监测和预测天气的模型,以估计与热相关的疾病(HRI)的急诊就诊量。采用回顾性时间序列分析方法,对加拿大安大略省东南部十个医院的气象站观测数据和基于国际疾病分类编码的 HRI 急诊就诊数据进行分析,时间范围为 2003 年 4 月至 2008 年 12 月,数据来源于国家门诊护理报告系统(NACRS)数据库、通过症候群监测系统收集的急诊患者主要主诉数据以及加拿大环境部的气象数据。使用泊松回归和快速正交搜索(FOS),一种非线性时间序列建模技术,基于气象预测变量(温度、湿度和风速)构建 HRI 急诊就诊量的预期数量模型。使用天气变量和症候群监测作为预测因子的回归模型预测 HRI 就诊量与 NACRS HRI 急诊就诊量的相关性略高于仅使用天气预测因子或症候群监测计数的回归模型。