Suppr超能文献

在间接分类任务中学习和转移类别知识。

Learning and transfer of category knowledge in an indirect categorization task.

机构信息

Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106-9660, USA.

出版信息

Psychol Res. 2012 May;76(3):292-303. doi: 10.1007/s00426-011-0348-1. Epub 2011 Jun 10.

Abstract

Knowledge representations acquired during category learning experiments are 'tuned' to the task goal. A useful paradigm to study category representations is indirect category learning. In the present article, we propose a new indirect categorization task called the "same"-"different" categorization task. The same-different categorization task is a regular same-different task, but the question asked to the participants is about the stimulus category membership instead of stimulus identity. Experiment 1 explores the possibility of indirectly learning rule-based and information-integration category structures using the new paradigm. The results suggest that there is little learning about the category structures resulting from an indirect categorization task unless the categories can be separated by a one-dimensional rule. Experiment 2 explores whether a category representation learned indirectly can be used in a direct classification task (and vice versa). The results suggest that previous categorical knowledge acquired during a direct classification task can be expressed in the same-different categorization task only when the categories can be separated by a rule that is easily verbalized. Implications of these results for categorization research are discussed.

摘要

在类别学习实验中获得的知识表示被“调整”为任务目标。一个研究类别表示的有用范例是间接类别学习。在本文中,我们提出了一种新的间接分类任务,称为“相同”-“不同”分类任务。相同-不同分类任务是一个常规的相同-不同任务,但向参与者提出的问题是关于刺激类别的归属,而不是刺激的身份。实验 1 探索了使用新范例间接学习基于规则和信息整合的类别结构的可能性。结果表明,除非类别可以通过一维规则来区分,否则间接分类任务中几乎没有关于类别结构的学习。实验 2 探讨了间接学习的类别表示是否可以用于直接分类任务(反之亦然)。结果表明,只有当类别可以通过易于口头表达的规则来区分时,在直接分类任务中获得的先前类别知识才能在相同-不同分类任务中表达出来。讨论了这些结果对分类研究的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验