Helie Sebastien, Ell Shawn W, Filoteo J Vincent, Maddox W Todd
Department of Psychological Sciences, Purdue University, United States.
Department of Psychology, University of Maine, Maine Graduate School of Biomedical Sciences and Engineering, United States.
Brain Cogn. 2015 Apr;95:19-34. doi: 10.1016/j.bandc.2015.01.009. Epub 2015 Feb 14.
In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g., categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define 'long' and 'short'). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL's implications for future research on rule learning.
在知觉分类中,规则选择包括选择一个或几个刺激维度,用于对刺激进行分类(例如,根据线条长度对线条进行分类)。一旦选择了一条规则,标准学习就包括定义如何使用所选维度对刺激进行分组(例如,如果所选规则是线条长度,则定义“长”和“短”)。关于标准学习的神经科学知之甚少,并且大多数现有的计算模型都没有为这个过程提供生物学机制。在本文中,我们介绍了一种新的规则学习模型,称为异突触抑制标准学习(HICL)。HICL包括对标准学习的基于生物学的解释,并且我们使用新的类别学习数据来测试该模型的关键方面。在HICL中,前额叶皮层中的规则选择性细胞使用突触前抑制来调节刺激-反应关联。标准学习是通过一种新型的异突触错误驱动的赫布学习在抑制性突触处实现的,该学习使用反馈来驱动细胞激活高于/低于代表离子门控机制的阈值。该模型用于解释来自两个实验的新的人类分类数据,这些数据表明:(1)如果无关维度也在变化,那么在给定维度上改变规则标准会更容易(实验1),以及(2)表明改变相关规则维度并学习新的标准更困难,但无关维度的变化也会促进这一过程(实验2)。我们最后讨论了HICL对未来规则学习研究的一些启示。