Suppr超能文献

基于规则分类中的标准学习:神经机制模拟与新数据

Criterion learning in rule-based categorization: simulation of neural mechanism and new data.

作者信息

Helie Sebastien, Ell Shawn W, Filoteo J Vincent, Maddox W Todd

机构信息

Department of Psychological Sciences, Purdue University, United States.

Department of Psychology, University of Maine, Maine Graduate School of Biomedical Sciences and Engineering, United States.

出版信息

Brain Cogn. 2015 Apr;95:19-34. doi: 10.1016/j.bandc.2015.01.009. Epub 2015 Feb 14.

Abstract

In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g., categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define 'long' and 'short'). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL's implications for future research on rule learning.

摘要

在知觉分类中,规则选择包括选择一个或几个刺激维度,用于对刺激进行分类(例如,根据线条长度对线条进行分类)。一旦选择了一条规则,标准学习就包括定义如何使用所选维度对刺激进行分组(例如,如果所选规则是线条长度,则定义“长”和“短”)。关于标准学习的神经科学知之甚少,并且大多数现有的计算模型都没有为这个过程提供生物学机制。在本文中,我们介绍了一种新的规则学习模型,称为异突触抑制标准学习(HICL)。HICL包括对标准学习的基于生物学的解释,并且我们使用新的类别学习数据来测试该模型的关键方面。在HICL中,前额叶皮层中的规则选择性细胞使用突触前抑制来调节刺激-反应关联。标准学习是通过一种新型的异突触错误驱动的赫布学习在抑制性突触处实现的,该学习使用反馈来驱动细胞激活高于/低于代表离子门控机制的阈值。该模型用于解释来自两个实验的新的人类分类数据,这些数据表明:(1)如果无关维度也在变化,那么在给定维度上改变规则标准会更容易(实验1),以及(2)表明改变相关规则维度并学习新的标准更困难,但无关维度的变化也会促进这一过程(实验2)。我们最后讨论了HICL对未来规则学习研究的一些启示。

相似文献

1
Criterion learning in rule-based categorization: simulation of neural mechanism and new data.
Brain Cogn. 2015 Apr;95:19-34. doi: 10.1016/j.bandc.2015.01.009. Epub 2015 Feb 14.
2
Biologically plausible learning in neural networks with modulatory feedback.
Neural Netw. 2017 Apr;88:32-48. doi: 10.1016/j.neunet.2017.01.007. Epub 2017 Jan 28.
3
Novel representations that support rule-based categorization are acquired on-the-fly during category learning.
Psychol Res. 2019 Apr;83(3):544-566. doi: 10.1007/s00426-019-01157-7. Epub 2019 Feb 26.
4
Learning to attend: modeling the shaping of selectivity in infero-temporal cortex in a categorization task.
Biol Cybern. 2006 May;94(5):351-65. doi: 10.1007/s00422-006-0054-z. Epub 2006 Mar 23.
5
Reward-dependent learning in neuronal networks for planning and decision making.
Prog Brain Res. 2000;126:217-29. doi: 10.1016/S0079-6123(00)26016-0.
6
Feedback can be superior to observational training for both rule-based and information-integration category structures.
Q J Exp Psychol (Hove). 2015;68(6):1203-22. doi: 10.1080/17470218.2014.978875. Epub 2015 Jan 9.
7
Synaptic dynamics: linear model and adaptation algorithm.
Neural Netw. 2014 Aug;56:49-68. doi: 10.1016/j.neunet.2014.04.001. Epub 2014 Apr 28.
8
The neural basis for novel semantic categorization.
Neuroimage. 2005 Jan 15;24(2):369-83. doi: 10.1016/j.neuroimage.2004.08.045. Epub 2004 Dec 10.
10
Neuronal bases of perceptual learning revealed by a synaptic balance scheme.
Neural Comput. 2004 Mar;16(3):563-94. doi: 10.1162/089976604772744910.

引用本文的文献

1
Explicit and implicit category learning in categorical visual search.
Atten Percept Psychophys. 2023 Oct;85(7):2131-2149. doi: 10.3758/s13414-023-02789-z. Epub 2023 Oct 2.
2
The impact of training methodology and representation on rule-based categorization: An fMRI study.
Cogn Affect Behav Neurosci. 2021 Aug;21(4):717-735. doi: 10.3758/s13415-021-00882-0. Epub 2021 Apr 6.
3
Novel representations that support rule-based categorization are acquired on-the-fly during category learning.
Psychol Res. 2019 Apr;83(3):544-566. doi: 10.1007/s00426-019-01157-7. Epub 2019 Feb 26.
4
Categorization system-switching deficits in typical aging and Parkinson's disease.
Neuropsychology. 2018 Sep;32(6):724-734. doi: 10.1037/neu0000459. Epub 2018 Jun 28.
5
The effect of training methodology on knowledge representation in categorization.
PLoS One. 2017 Aug 28;12(8):e0183904. doi: 10.1371/journal.pone.0183904. eCollection 2017.
6
Base-rate sensitivity through implicit learning.
PLoS One. 2017 Jun 20;12(6):e0179256. doi: 10.1371/journal.pone.0179256. eCollection 2017.

本文引用的文献

1
Learning robust cortico-cortical associations with the basal ganglia: an integrative review.
Cortex. 2015 Mar;64:123-35. doi: 10.1016/j.cortex.2014.10.011. Epub 2014 Oct 27.
2
A neurocomputational theory of how explicit learning bootstraps early procedural learning.
Front Comput Neurosci. 2013 Dec 18;7:177. doi: 10.3389/fncom.2013.00177. eCollection 2013.
4
Targeted training of the decision rule benefits rule-guided behavior in Parkinson's disease.
Cogn Affect Behav Neurosci. 2013 Dec;13(4):830-46. doi: 10.3758/s13415-013-0176-4.
5
6
Category learning increases discriminability of relevant object dimensions in visual cortex.
Cereb Cortex. 2013 Apr;23(4):814-23. doi: 10.1093/cercor/bhs067. Epub 2012 Apr 5.
7
The Neurodynamics of Cognition: A Tutorial on Computational Cognitive Neuroscience.
J Math Psychol. 2011 Aug 1;55(4):273-289. doi: 10.1016/j.jmp.2011.04.003.
8
Learning and transfer of category knowledge in an indirect categorization task.
Psychol Res. 2012 May;76(3):292-303. doi: 10.1007/s00426-011-0348-1. Epub 2011 Jun 10.
9
Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis.
Proc Natl Acad Sci U S A. 2011 Sep 13;108 Suppl 3(Suppl 3):15647-54. doi: 10.1073/pnas.1014269108. Epub 2011 Mar 9.
10
Long-term plasticity at inhibitory synapses.
Curr Opin Neurobiol. 2011 Apr;21(2):328-38. doi: 10.1016/j.conb.2011.01.006. Epub 2011 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验