Molecular Pathogenesis Program, The Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, NY, USA.
Mol Biol Evol. 2012 Jan;29(1):91-100. doi: 10.1093/molbev/msr149. Epub 2011 Jun 16.
Animals and fungi diverged from a common unicellular ancestor of Opisthokonta, yet they exhibit significant differences in their components of Ca2+ signaling pathways. Many Ca2+ signaling molecules appear to be either animal-specific or fungal-specific, which is generally believed to result from lineage-specific adaptations to distinct physiological requirements. Here, by analyzing the genomic data from several close relatives of animals and fungi, we demonstrate that many components of animal and fungal Ca2+ signaling machineries are present in the apusozoan protist Thecamonas trahens, which belongs to the putative unicellular sister group to Opisthokonta. We also identify the conserved portion of Ca2+ signaling molecules in early evolution of animals and fungi following their divergence. Furthermore, our results reveal the lineage-specific expansion of Ca2+ channels and transporters in the unicellular ancestors of animals and in basal fungi. These findings provide novel insights into the evolution and regulation of Ca2+ signaling critical for animal and fungal biology.
动物和真菌是从后生动物的一个共同的单细胞祖先分化而来的,但它们在 Ca2+信号通路的组成成分上表现出显著的差异。许多 Ca2+信号分子似乎是动物特异性或真菌特异性的,这通常被认为是由于适应不同的生理需求而产生的谱系特异性。在这里,我们通过分析几种动物和真菌的近亲的基因组数据,证明了许多动物和真菌 Ca2+信号机制的成分存在于属于后生动物假定单细胞姐妹群的肉足鞭毛原生动物 Thecamonas trahens 中。我们还鉴定了动物和真菌分化后 Ca2+信号分子在早期进化中的保守部分。此外,我们的结果揭示了动物的单细胞祖先和基础真菌中 Ca2+通道和转运蛋白的谱系特异性扩张。这些发现为 Ca2+信号的进化和调控提供了新的见解,这对动物和真菌生物学至关重要。