Department of Photochemistry and Molecular Science, Uppsala University, Sweden.
Chemphyschem. 2011 Aug 1;12(11):2101-9. doi: 10.1002/cphc.201100245. Epub 2011 Jun 16.
Artificial photosynthesis based on supramolecular photocatalysts offers the unique possibility to study the molecular processes underlying catalytic conversion of photons into chemical fuels in great detail and to tune the properties of the photocatalyst by alterations of the molecular framework. Herein we focus on both possibilities in studying the photocatalytic reduction of protons by derivatives of the well-known photocatalyst (tbbpy)(2)Ru(tpphz)PdCl(2)(2) [4,4'-di-tert-butyl-2,2'-bipyridine (tbbpy), tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine (tpphz)]. We report on a modified photocatalyst where the crucial bridging ligand tpphz is substituted by bromine and investigate the effect of the structural variation on the catalytic properties of the complex and its ultrafast intramolecular charge transfer behavior. It is found that structural modification stabilizes the phenanthroline-centered metal-to-ligand charge-transfer state on the tpphz moiety, thereby reducing the electron transfer gradient across the entire electron-relaying bridging ligand and at the same time accelerating nanosecond ground-state recovery. The same structural modifications cause an overall reduction of the catalytic activity of the complex. Thus, the results highlight the potential of small structural variations in the molecular framework of supramolecular catalysts in understanding the photoinduced charge-transfer processes and optimizing their catalytic performance.
基于超分子光催化剂的人工光合作用提供了独特的可能性,可以详细研究催化转化光子为化学燃料的分子过程,并通过改变分子框架来调整光催化剂的性质。在此,我们重点研究了研究众所周知的光催化剂(tbbpy)(2)Ru(tpphz)PdCl(2)(2) [4,4'-二叔丁基-2,2'-联吡啶(tbbpy),四吡啶并[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]吩嗪(tpphz)]的质子光催化还原的这两种可能性。我们报告了一种经过修饰的光催化剂,其中关键的桥联配体 tpphz 被溴取代,并研究了结构变化对配合物催化性质及其超快分子内电荷转移行为的影响。结果发现,结构修饰稳定了位于吩嗪中心的金属-配体电荷转移态,从而降低了整个电子传递桥联配体的电子转移梯度,同时加速了纳秒基态恢复。相同的结构修饰导致配合物的催化活性总体降低。因此,这些结果突出了在超分子催化剂的分子框架中进行微小结构变化的潜力,以理解光诱导的电荷转移过程并优化其催化性能。