Synthetic Biology Working Group, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
Biotechnol J. 2011 Jul;6(7):807-11. doi: 10.1002/biot.201100024. Epub 2011 Jun 17.
A goal of synthetic biology is to make biological systems easier to engineer. One of the aims is to design, with nanometer-scale precision, biomaterials with well-defined properties. The surface-layer protein SbpA forms 2D arrays naturally on the cell surface of Lysinibacillus sphaericus, but also as the purified protein in solution upon the addition of divalent cations. The high propensity of SbpA to form crystalline arrays, which can be simply controlled by divalent cations, and the possibility to genetically alter the protein, make SbpA an attractive molecule for synthetic biology. To be a useful tool, however, it is important that a simple protocol can be used to produce recombinant wild-type and modified SbpA in large quantities and in a biologically active form. The present study addresses this requirement by introducing a mild and non-denaturing purification protocol to produce milligram quantities of recombinant, active SbpA.
合成生物学的目标之一是使生物系统更易于工程化。目的之一是设计具有明确定义性质的纳米级精度生物材料。表面层蛋白 SbpA 自然地在溶磷巨大芽孢杆菌的细胞表面形成 2D 阵列,但在添加二价阳离子时也作为纯蛋白存在于溶液中。SbpA 形成结晶阵列的倾向很高,这可以通过二价阳离子简单地控制,并且可以通过遗传改变蛋白,使 SbpA 成为合成生物学中具有吸引力的分子。然而,要成为一种有用的工具,重要的是可以使用简单的方案来大量生产具有生物活性的重组野生型和修饰型 SbpA。本研究通过引入温和且非变性的纯化方案来生产毫克量的重组、活性 SbpA,从而满足了这一要求。