Program in Computational Biology and Bioinformatics, Department of Computer Science, Center for Systems Biology, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA.
Bioinformatics. 2011 Jul 1;27(13):i295-303. doi: 10.1093/bioinformatics/btr244.
To advance understanding of eukaryotic cell division, it is important to observe the process precisely. To this end, researchers monitor changes in dividing cells as they traverse the cell cycle, with the presence or absence of morphological or genetic markers indicating a cell's position in a particular interval of the cell cycle. A wide variety of marker data is available, including information-rich cellular imaging data. However, few formal statistical methods have been developed to use these valuable data sources in estimating how a population of cells progresses through the cell cycle. Furthermore, existing methods are designed to handle only a single binary marker of cell cycle progression at a time. Consequently, they cannot facilitate comparison of experiments involving different sets of markers.
Here, we develop a new sampling model to accommodate an arbitrary number of different binary markers that characterize the progression of a population of dividing cells along a branching process. We engineer a strain of Saccharomyces cerevisiae with fluorescently labeled markers of cell cycle progression, and apply our new model to two image datasets we collected from the strain, as well as an independent dataset of different markers. We use our model to estimate the duration of post-cytokinetic attachment between a S.cerevisiae mother and daughter cell. The Java implementation is fast and extensible, and includes a graphical user interface. Our model provides a powerful and flexible cell cycle analysis tool, suitable to any type or combination of binary markers.
The software is available from: http://www.cs.duke.edu/~amink/software/cloccs/.
为了深入了解真核细胞分裂,精确观察这个过程非常重要。为此,研究人员在细胞周期中监测正在分裂的细胞的变化,通过形态学或遗传学标记的存在或缺失来指示细胞在细胞周期特定间隔中的位置。有各种各样的标记数据可用,包括信息丰富的细胞成像数据。然而,很少有正式的统计方法被开发出来,用于在估计细胞群体如何通过细胞周期时使用这些有价值的数据源。此外,现有的方法旨在一次处理单个二进制细胞周期进展标记。因此,它们无法促进涉及不同标记集的实验的比较。
在这里,我们开发了一种新的抽样模型,以适应任意数量的不同二进制标记,这些标记用于描述一群正在分裂的细胞沿着分支过程的进展。我们设计了一种带有荧光标记的细胞周期进展标记的酿酒酵母菌株,并将我们的新模型应用于我们从该菌株收集的两个图像数据集,以及不同标记的独立数据集。我们使用我们的模型来估计酿酒酵母母细胞和子细胞之间的胞质分裂后附着的持续时间。该 Java 实现速度快且可扩展,并包括一个图形用户界面。我们的模型提供了一个强大而灵活的细胞周期分析工具,适用于任何类型或组合的二进制标记。
该软件可从以下网址获得:http://www.cs.duke.edu/~amink/software/cloccs/。