Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA.
Bioinformatics. 2011 Jul 1;27(13):i34-42. doi: 10.1093/bioinformatics/btr238.
Proteins of all kinds can self-assemble into highly ordered β-sheet aggregates known as amyloid fibrils, important both biologically and clinically. However, the specific molecular structure of a fibril can vary dramatically depending on sequence and environmental conditions, and mutations can drastically alter amyloid function and pathogenicity. Experimental structure determination has proven extremely difficult with only a handful of NMR-based models proposed, suggesting a need for computational methods.
We present AmyloidMutants, a statistical mechanics approach for de novo prediction and analysis of wild-type and mutant amyloid structures. Based on the premise of protein mutational landscapes, AmyloidMutants energetically quantifies the effects of sequence mutation on fibril conformation and stability. Tested on non-mutant, full-length amyloid structures with known chemical shift data, AmyloidMutants offers roughly 2-fold improvement in prediction accuracy over existing tools. Moreover, AmyloidMutants is the only method to predict complete super-secondary structures, enabling accurate discrimination of topologically dissimilar amyloid conformations that correspond to the same sequence locations. Applied to mutant prediction, AmyloidMutants identifies a global conformational switch between Aβ and its highly-toxic 'Iowa' mutant in agreement with a recent experimental model based on partial chemical shift data. Predictions on mutant, yeast-toxic strains of HET-s suggest similar alternate folds. When applied to HET-s and a HET-s mutant with core asparagines replaced by glutamines (both highly amyloidogenic chemically similar residues abundant in many amyloids), AmyloidMutants surprisingly predicts a greatly reduced capacity of the glutamine mutant to form amyloid. We confirm this finding by conducting mutagenesis experiments.
Our tool is publically available on the web at http://amyloid.csail.mit.edu/.
各种蛋白质都可以自组装成高度有序的β-折叠聚集体,称为淀粉样纤维,这在生物学和临床上都很重要。然而,取决于序列和环境条件,纤维的具体分子结构可能会有很大的不同,并且突变可以极大地改变淀粉样蛋白的功能和致病性。只有少数基于 NMR 的模型被提出,实验结构测定被证明极其困难,这表明需要计算方法。
我们提出了 AmyloidMutants,这是一种从头预测和分析野生型和突变型淀粉样结构的统计力学方法。基于蛋白质突变景观的前提,AmyloidMutants从能量上量化了序列突变对纤维构象和稳定性的影响。在具有已知化学位移数据的非突变、全长淀粉样结构上进行测试,AmyloidMutants在预测准确性方面比现有工具提高了约 2 倍。此外,AmyloidMutants 是唯一能够预测完整超二级结构的方法,能够准确区分拓扑上不同的淀粉样构象,这些构象对应于相同的序列位置。在突变预测中的应用,AmyloidMutants 确定了 Aβ与其高度毒性的“爱荷华”突变体之间的全局构象转换,这与最近基于部分化学位移数据的实验模型一致。对突变酵母毒性菌株 HET-s 的预测表明存在类似的替代折叠。当应用于 HET-s 和一个核心天冬酰胺被谷氨酰胺取代的 HET-s 突变体(两者都是化学上高度淀粉样的相似残基,在许多淀粉样蛋白中都很丰富)时,AmyloidMutants 出人意料地预测了谷氨酰胺突变体形成淀粉样的能力大大降低。我们通过进行诱变实验证实了这一发现。
我们的工具可在 http://amyloid.csail.mit.edu/ 上公开使用。