Suppr超能文献

β-折叠片层与金表面的相互作用。

Interaction of β-sheet folds with a gold surface.

机构信息

Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.

出版信息

PLoS One. 2011;6(6):e20925. doi: 10.1371/journal.pone.0020925. Epub 2011 Jun 7.

Abstract

The adsorption of proteins on inorganic surfaces is of fundamental biological importance. Further, biomedical and nanotechnological applications increasingly use interfaces between inorganic material and polypeptides. Yet, the underlying adsorption mechanism of polypeptides on surfaces is not well understood and experimentally difficult to analyze. Therefore, we investigate here the interactions of polypeptides with a gold(111) surface using computational molecular dynamics (MD) simulations with a polarizable gold model in explicit water. Our focus in this paper is the investigation of the interaction of polypeptides with β-sheet folds. First, we concentrate on a β-sheet forming model peptide. Second, we investigate the interactions of two domains with high β-sheet content of the biologically important extracellular matrix protein fibronectin (FN). We find that adsorption occurs in a stepwise mechanism both for the model peptide and the protein. The positively charged amino acid Arg facilitates the initial contact formation between protein and gold surface. Our results suggest that an effective gold-binding surface patch is overall uncharged, but contains Arg for contact initiation. The polypeptides do not unfold on the gold surface within the simulation time. However, for the two FN domains, the relative domain-domain orientation changes. The observation of a very fast and strong adsorption indicates that in a biological matrix, no bare gold surfaces will be present. Hence, the bioactivity of gold surfaces (like bare gold nanoparticles) will critically depend on the history of particle administration and the proteins present during initial contact between gold and biological material. Further, gold particles may act as seeds for protein aggregation. Structural re-organization and protein aggregation are potentially of immunological importance.

摘要

蛋白质在无机表面的吸附具有重要的生物学意义。此外,生物医学和纳米技术应用越来越多地使用无机材料和多肽之间的界面。然而,多肽在表面上的吸附机制尚未得到很好的理解,实验分析也很困难。因此,我们使用具有极化金模型的显式水的计算分子动力学(MD)模拟来研究多肽与金(111)表面的相互作用。本文的重点是研究多肽与β-折叠结构的相互作用。首先,我们集中研究β-折叠形成模型肽。其次,我们研究了具有高β-折叠含量的生物重要细胞外基质蛋白纤维连接蛋白(FN)的两个结构域与金表面的相互作用。我们发现,对于模型肽和蛋白质,吸附都是通过逐步机制发生的。带正电荷的氨基酸精氨酸促进蛋白质与金表面之间初始接触的形成。我们的结果表明,有效的金结合表面区域整体上不带电荷,但包含用于接触起始的精氨酸。在模拟过程中,多肽不会在金表面上展开。然而,对于两个 FN 结构域,相对结构域-结构域取向发生变化。观察到非常快速和强烈的吸附表明,在生物基质中,不会存在裸露的金表面。因此,金表面的生物活性(如裸露的金纳米颗粒)将极大地取决于金与生物材料最初接触时颗粒的给药历史和存在的蛋白质。此外,金颗粒可能作为蛋白质聚集的种子。结构重组和蛋白质聚集具有潜在的免疫学意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d3/3110247/d312668b70cc/pone.0020925.g001.jpg

相似文献

1
Interaction of β-sheet folds with a gold surface.
PLoS One. 2011;6(6):e20925. doi: 10.1371/journal.pone.0020925. Epub 2011 Jun 7.
2
Adsorption of Collagen-like Peptides onto Gold Nanosurfaces.
Langmuir. 2019 Apr 2;35(13):4435-4444. doi: 10.1021/acs.langmuir.8b03680. Epub 2019 Mar 21.
3
4
Fibronectin module FN(III)9 adsorption at contrasting solid model surfaces studied by atomistic molecular dynamics.
J Phys Chem B. 2014 Aug 21;118(33):9900-8. doi: 10.1021/jp5020077. Epub 2014 Aug 7.
5
Increase in the β-Sheet Character of an Amyloidogenic Peptide upon Adsorption onto Gold and Silver Surfaces.
Chemphyschem. 2017 Mar 3;18(5):526-536. doi: 10.1002/cphc.201601000. Epub 2017 Jan 25.
6
Role of Ninth Type-III Domain of Fibronectin in the Mediation of Cell-Binding Domain Adsorption on Surfaces with Different Chemistries.
Langmuir. 2018 Aug 21;34(33):9847-9855. doi: 10.1021/acs.langmuir.8b01937. Epub 2018 Aug 8.
7
Kinetics of conformational changes of fibronectin adsorbed onto model surfaces.
Colloids Surf B Biointerfaces. 2008 May 1;63(1):129-37. doi: 10.1016/j.colsurfb.2007.11.015. Epub 2007 Dec 4.
8
Molecular mechanism of β-sheet self-organization at water-hydrophobic interfaces.
Proteins. 2011 Jan;79(1):1-22. doi: 10.1002/prot.22854. Epub 2010 Oct 11.
9
Molecular simulation of fibronectin adsorption onto polyurethane surfaces.
Langmuir. 2012 Aug 28;28(34):12619-28. doi: 10.1021/la301546v. Epub 2012 Aug 16.

引用本文的文献

1
Characterizing polyproline II conformational change of collagen superhelix unit on adsorption on gold surface.
Nanoscale Adv. 2023 Aug 22;5(19):5322-5331. doi: 10.1039/d3na00185g. eCollection 2023 Sep 26.
2
Orientation effects on the nanoscale adsorption behavior of bone morphogenetic protein-2 on hydrophilic silicon dioxide.
RSC Adv. 2019 Jan 8;9(2):906-916. doi: 10.1039/c8ra09165j. eCollection 2019 Jan 2.
3
Experimental characterization and simulation of amino acid and peptide interactions with inorganic materials.
Eng Life Sci. 2017 Jul 26;18(2):84-100. doi: 10.1002/elsc.201700019. eCollection 2018 Feb.
4
Inner-View of Nanomaterial Incited Protein Conformational Changes: Insights into Designable Interaction.
Research (Wash D C). 2018 Sep 5;2018:9712832. doi: 10.1155/2018/9712832. eCollection 2018.
6
Electrochemical Characterization of Protein Adsorption onto YNGRT-Au and VLGXE-Au Surfaces.
Sensors (Basel). 2015 Aug 7;15(8):19429-42. doi: 10.3390/s150819429.
8
Structural determinants for protein adsorption/non-adsorption to silica surface.
PLoS One. 2013 Nov 25;8(11):e81346. doi: 10.1371/journal.pone.0081346. eCollection 2013.
9
Synthetic osteogenic extracellular matrix formed by coated silicon dioxide nanosprings.
J Nanobiotechnology. 2012 Jan 27;10:6. doi: 10.1186/1477-3155-10-6.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
ProMetCS: An Atomistic Force Field for Modeling Protein-Metal Surface Interactions in a Continuum Aqueous Solvent.
J Chem Theory Comput. 2010 May 11;6(5):1753-68. doi: 10.1021/ct100086j. Epub 2010 Apr 16.
3
Hydrophilic linkers and polar contacts affect aggregation of FG repeat peptides.
Biophys J. 2010 Jun 2;98(11):2653-61. doi: 10.1016/j.bpj.2010.02.049.
4
Probing the molecular mechanisms of quartz-binding peptides.
Langmuir. 2010 Jul 6;26(13):11003-9. doi: 10.1021/la100049s.
5
What governs protein adsorption and immobilization at a charged solid surface?
Langmuir. 2010 Jun 1;26(11):7690-4. doi: 10.1021/la101276v.
7
The conformations of amino acids on a gold(111) surface.
Chemphyschem. 2010 Jun 7;11(8):1763-7. doi: 10.1002/cphc.200900990.
8
Interaction of gold nanoparticles with common human blood proteins.
ACS Nano. 2010 Jan 26;4(1):365-79. doi: 10.1021/nn9011187.
9
Protein-surface interactions: challenging experiments and computations.
J Mol Recognit. 2010 May-Jun;23(3):259-62. doi: 10.1002/jmr.993.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验