Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
Respir Physiol Neurobiol. 2011 Sep 15;178(2):191-5. doi: 10.1016/j.resp.2011.05.018. Epub 2011 Jun 13.
Resting arterial H+ concentration ([H+]a) is in the nanomolar range (40±2 nm/L) while its production is in the millimolar range/min, with little variation from subject to subject. To determine the precision with which [H(+)]a is regulated during exercise, [H+]a, PaCO2 and ventilation (V˙(E)) were measured during progressively increasing work rate exercise in 16 normal subjects. (V˙(E)) increased with [H+]a, the latter attributable to PaCO2 increase below the lactic acidosis threshold (LAT) (ΔV˙(E)/Δ[H+]a ≈ 15 L min(-1) nanomol(-1)). [H+]a and PaCO2 increased, simultaneously, as work rate was increased below LAT. PaCO2 reversed direction of change between LAT and ventilatory compensation point (VCP). Above LAT, [H+]a increase relative to (V˙(E)) increase was greater than below LAT. PaCO2 decreased above the LAT, while [H+]a continued to increase. Thus the exercise acidosis was converted from respiratory, below, to a metabolic, above the LAT. We conclude that [H+]a is increased and regulated over the full range of exercise, but with less sensitivity above the LAT.
静息动脉 H+浓度 ([H+]a) 处于纳摩尔范围(40±2nm/L),而其产生速度为毫摩尔/分钟,个体间差异很小。为了确定 [H(+)]a 在运动期间调节的精确性,在 16 名正常受试者中,在逐渐增加的工作速率运动期间测量了 [H+]a、PaCO2 和通气量 (V˙(E))。随着 [H+]a 的增加,V˙(E) 增加,后者归因于低于乳酸酸中毒阈值 (LAT) 的 PaCO2 增加(ΔV˙(E)/Δ[H+]a≈15 L min(-1) nanomol(-1))。当工作速率低于 LAT 时,[H+]a 和 PaCO2 同时增加。PaCO2 在 LAT 和通气补偿点 (VCP) 之间改变方向。在 LAT 以上,[H+]a 相对于 (V˙(E)) 的增加而增加的幅度大于 LAT 以下。PaCO2 在 LAT 以上下降,而 [H+]a 继续增加。因此,运动性酸中毒从 LAT 以下的呼吸性转化为 LAT 以上的代谢性。我们得出结论,[H+]a 在整个运动范围内增加并得到调节,但在 LAT 以上的敏感度较低。