School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS81RJ, UK.
Sci Total Environ. 2011 Aug 15;409(18):3472-81. doi: 10.1016/j.scitotenv.2011.05.032.
Identifying and quantifying the statistical relationships between climate and anthropogenic drivers of fire is important for global biophysical modelling of wildfire and other Earth system processes. This study used regression tree and random forest analysis on global data for various climatic and human variables to establish their relative importance. The main interactions found at the global scale also apply regionally: greatest wildfire burned area is associated with high temperature (> 28 °C), intermediate annual rainfall (350-1100 mm), and prolonged dry periods (which varies by region). However, the regions of highest fire incidence do not show clear and systematic behaviour. Thresholds seen in the regression tree split conditions vary, as do the interplay between climatic and anthropogenic variables, so challenges remain in developing robust predictive insight for the most wildfire-threatened regions. Anthropogenic activities alter the spatial extent of wildfires. Gross domestic product (GDP) density is the most important human predictor variable at the regional scale, and burned area is always greater when GDP density is minimised. South America is identified as a region of concern, as anthropogenic factors (notably land conversions) outweigh climatic drivers of wildfire burned area.
识别和量化气候与火灾人为驱动因素之间的统计关系,对于野火和其他地球系统过程的全球生物物理建模非常重要。本研究使用回归树和随机森林分析,对各种气候和人为变量的全球数据进行分析,以确定它们的相对重要性。在全球范围内发现的主要相互作用也适用于区域:最大的野火燃烧面积与高温(>28°C)、中等年降雨量(350-1100 毫米)和延长的干旱期(因地区而异)有关。然而,火灾发生率最高的地区并没有表现出明显和系统的行为。回归树划分条件中看到的阈值各不相同,气候和人为变量之间的相互作用也各不相同,因此,在最易受野火威胁的地区开发稳健的预测性见解仍然存在挑战。人为活动改变了野火的空间范围。国内生产总值(GDP)密度是区域尺度上最重要的人为预测变量,当 GDP 密度最小时,燃烧面积总是更大。南美洲被确定为一个令人关注的地区,因为人为因素(特别是土地转换)超过了野火燃烧面积的气候驱动因素。