Suppr超能文献

多发性硬化症正常脑区的 MRI 模式识别。

MRI pattern recognition in multiple sclerosis normal-appearing brain areas.

机构信息

Bernstein Center for Computational Neuroscience Berlin, Charité - University Medicine, Berlin, Germany.

出版信息

PLoS One. 2011;6(6):e21138. doi: 10.1371/journal.pone.0021138. Epub 2011 Jun 17.

Abstract

OBJECTIVE

Here, we use pattern-classification to investigate diagnostic information for multiple sclerosis (MS; relapsing-remitting type) in lesioned areas, areas of normal-appearing grey matter (NAGM), and normal-appearing white matter (NAWM) as measured by standard MR techniques.

METHODS

A lesion mapping was carried out by an experienced neurologist for Turbo Inversion Recovery Magnitude (TIRM) images of individual subjects. Combining this mapping with templates from a neuroanatomic atlas, the TIRM images were segmented into three areas of homogenous tissue types (Lesions, NAGM, and NAWM) after spatial standardization. For each area, a linear Support Vector Machine algorithm was used in multiple local classification analyses to determine the diagnostic accuracy in separating MS patients from healthy controls based on voxel tissue intensity patterns extracted from small spherical subregions of these larger areas. To control for covariates, we also excluded group-specific biases in deformation fields as a potential source of information.

RESULTS

Among regions containing lesions a posterior parietal WM area was maximally informative about the clinical status (96% accuracy, p<10(-13)). Cerebellar regions were maximally informative among NAGM areas (84% accuracy, p<10(-7)). A posterior brain region was maximally informative among NAWM areas (91% accuracy, p<10(-10)).

INTERPRETATION

We identified regions indicating MS in lesioned, but also NAGM, and NAWM areas. This complements the current perception that standard MR techniques mainly capture macroscopic tissue variations due to focal lesion processes. Compared to current diagnostic guidelines for MS that define areas of diagnostic information with moderate spatial specificity, we identified hotspots of MS associated tissue alterations with high specificity defined on a millimeter scale.

摘要

目的

在这里,我们使用模式分类来研究通过标准磁共振技术测量的病变区域、正常表现灰质(NAGM)区域和正常表现白质(NAWM)中的多发性硬化症(MS;复发缓解型)的诊断信息。

方法

由一位经验丰富的神经科医生对个体受试者的 Turbo 反转恢复幅度(TIRM)图像进行病变映射。将这种映射与神经解剖图谱模板相结合,在空间标准化后,将 TIRM 图像分为三种同质组织类型(病变、NAGM 和 NAWM)。对于每个区域,使用线性支持向量机算法在多个局部分类分析中,基于从这些较大区域的小球形子区域提取的组织强度模式,确定基于体素的诊断准确性,以将 MS 患者与健康对照者区分开来。为了控制协变量,我们还排除了变形场中可能存在的组特异性偏差,将其作为潜在信息来源。

结果

在包含病变的区域中,后顶叶 WM 区域对临床状态的信息最丰富(准确率为 96%,p<10(-13))。小脑区域在 NAGM 区域中信息最丰富(准确率为 84%,p<10(-7))。后脑部在 NAWM 区域中信息最丰富(准确率为 91%,p<10(-10))。

解释

我们确定了在病变区域、甚至 NAGM 和 NAWM 区域中指示 MS 的区域。这补充了当前的认知,即标准磁共振技术主要捕捉由于局灶性病变过程引起的宏观组织变化。与目前将诊断信息定义为具有中等空间特异性的 MS 诊断指南相比,我们在毫米尺度上确定了具有高特异性的 MS 相关组织改变的热点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ac5/3117878/0f807cbb5990/pone.0021138.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验