Suppr超能文献

多模态神经影像学分类器用于酒精依赖。

A multimodal neuroimaging classifier for alcohol dependence.

机构信息

Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.

Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany.

出版信息

Sci Rep. 2020 Jan 15;10(1):298. doi: 10.1038/s41598-019-56923-9.

Abstract

With progress in magnetic resonance imaging technology and a broader dissemination of state-of-the-art imaging facilities, the acquisition of multiple neuroimaging modalities is becoming increasingly feasible. One particular hope associated with multimodal neuroimaging is the development of reliable data-driven diagnostic classifiers for psychiatric disorders, yet previous studies have often failed to find a benefit of combining multiple modalities. As a psychiatric disorder with established neurobiological effects at several levels of description, alcohol dependence is particularly well-suited for multimodal classification. To this aim, we developed a multimodal classification scheme and applied it to a rich neuroimaging battery (structural, functional task-based and functional resting-state data) collected in a matched sample of alcohol-dependent patients (N = 119) and controls (N = 97). We found that our classification scheme yielded 79.3% diagnostic accuracy, which outperformed the strongest individual modality - grey-matter density - by 2.7%. We found that this moderate benefit of multimodal classification depended on a number of critical design choices: a procedure to select optimal modality-specific classifiers, a fine-grained ensemble prediction based on cross-modal weight matrices and continuous classifier decision values. We conclude that the combination of multiple neuroimaging modalities is able to moderately improve the accuracy of machine-learning-based diagnostic classification in alcohol dependence.

摘要

随着磁共振成像技术的进步和更先进的成像设备的广泛传播,获取多种神经影像学模式变得越来越可行。多模态神经影像学的一个特别希望是开发用于精神障碍的可靠数据驱动的诊断分类器,但以前的研究往往未能发现结合多种模式的益处。作为一种具有在多个描述水平上确立的神经生物学效应的精神障碍,酒精依赖特别适合于多模态分类。为此,我们开发了一种多模态分类方案,并将其应用于在匹配的酒精依赖患者(N=119)和对照组(N=97)样本中收集的丰富的神经影像学电池(结构、功能任务和功能静息状态数据)。我们发现,我们的分类方案产生了 79.3%的诊断准确性,比最强的单一模式——灰质密度——高出 2.7%。我们发现,这种多模态分类的适度益处取决于许多关键的设计选择:一种选择最佳模态特定分类器的过程,一种基于跨模态权重矩阵和连续分类器决策值的精细集成预测。我们得出结论,多种神经影像学模式的结合能够适度提高基于机器学习的酒精依赖诊断分类的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/265b/6962344/d539790862ab/41598_2019_56923_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验