Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
Magn Reson Med. 2012 Mar;67(3):731-9. doi: 10.1002/mrm.23054. Epub 2011 Jun 23.
Several in vivo quantitative MRI techniques have been proposed as surrogate measures to map iron content in the human brain. The majority of in vivo quantitative MRI iron mapping methods used the age-dependent iron content data based on postmortem data. In this work, we fused atlas-based human brain volumetry obtained on a large cohort of healthy adults using FreeSurfer with T(2) relaxation time measurements. We provide a brain atlas-based T(2) relaxation time map, which was subsequently used along with published postmortem iron content data to obtain a map of iron content in subcortical and cortical gray matter. We have also investigated the sensitivity of the linear model relating transverse relaxation rate with published iron content to the number of regions used. Our work highlights the challenges encountered on using the simple model along with postmortem data to infer iron content in several brain regions where postmortem iron data are scant (e.g., corpus callosum, amygdale).
已经提出了几种体内定量 MRI 技术作为替代指标来绘制人脑内的铁含量图。大多数基于体内的定量 MRI 铁测绘方法都使用基于死后数据的年龄依赖性铁含量数据。在这项工作中,我们融合了使用 FreeSurfer 在大量健康成年人身上获得的基于图谱的大脑容积测量数据与 T2 弛豫时间测量数据。我们提供了一个基于大脑图谱的 T2 弛豫时间图,随后将其与已发表的死后铁含量数据结合使用,以获得皮质下和皮质灰质中铁含量的图。我们还研究了与已发表的铁含量相关的横向弛豫率的线性模型的敏感性,以了解使用该模型和死后数据来推断几个死后铁含量数据稀少的脑区(例如胼胝体、杏仁核)的铁含量的敏感性。我们的工作强调了在使用简单模型和死后数据来推断几个脑区的铁含量时遇到的挑战,这些脑区的死后铁含量数据很少(例如胼胝体、杏仁核)。