Suppr超能文献

计算和可视化人脑内体素各向异性弛豫-扩散特征。

Computing and visualising intra-voxel orientation-specific relaxation-diffusion features in the human brain.

机构信息

Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden.

Random Walk Imaging AB, Lund, Sweden.

出版信息

Hum Brain Mapp. 2021 Feb 1;42(2):310-328. doi: 10.1002/hbm.25224. Epub 2020 Oct 6.

Abstract

Diffusion MRI techniques are used widely to study the characteristics of the human brain connectome in vivo. However, to resolve and characterise white matter (WM) fibres in heterogeneous MRI voxels remains a challenging problem typically approached with signal models that rely on prior information and constraints. We have recently introduced a 5D relaxation-diffusion correlation framework wherein multidimensional diffusion encoding strategies are used to acquire data at multiple echo-times to increase the amount of information encoded into the signal and ease the constraints needed for signal inversion. Nonparametric Monte Carlo inversion of the resulting datasets yields 5D relaxation-diffusion distributions where contributions from different sub-voxel tissue environments are separated with minimal assumptions on their microscopic properties. Here, we build on the 5D correlation approach to derive fibre-specific metrics that can be mapped throughout the imaged brain volume. Distribution components ascribed to fibrous tissues are resolved, and subsequently mapped to a dense mesh of overlapping orientation bins to define a smooth orientation distribution function (ODF). Moreover, relaxation and diffusion measures are correlated to each independent ODF coordinate, thereby allowing the estimation of orientation-specific relaxation rates and diffusivities. The proposed method is tested on a healthy volunteer, where the estimated ODFs were observed to capture major WM tracts, resolve fibre crossings, and, more importantly, inform on the relaxation and diffusion features along with distinct fibre bundles. If combined with fibre-tracking algorithms, the methodology presented in this work has potential for increasing the depth of characterisation of microstructural properties along individual WM pathways.

摘要

扩散磁共振成像技术被广泛用于研究活体人脑连接组的特征。然而,要解决并描述不均匀磁共振体素中的白质(WM)纤维仍然是一个具有挑战性的问题,通常采用依赖于先验信息和约束的信号模型来解决。我们最近提出了一个 5D 弛豫-扩散相关框架,其中多维扩散编码策略用于在多个回波时间采集数据,以增加信号中编码的信息量,并减轻信号反演所需的约束。对所得数据集的非参数蒙特卡罗反演产生 5D 弛豫-扩散分布,其中来自不同亚体素组织环境的贡献可以分离,而对其微观特性的假设最小化。在这里,我们基于 5D 相关方法来推导出可以映射到整个成像脑体积的纤维特异性度量。解析归因于纤维组织的分布分量,并随后映射到重叠取向箱的密集网格,以定义平滑的取向分布函数(ODF)。此外,弛豫和扩散度量与每个独立的 ODF 坐标相关联,从而允许估计各向异性的弛豫率和扩散率。该方法在健康志愿者身上进行了测试,结果表明,所估计的 ODF 能够捕获主要的 WM 束,解析纤维交叉,并更重要的是,提供沿不同纤维束的弛豫和扩散特征的信息。如果与纤维跟踪算法相结合,本工作中提出的方法有可能增加对单个 WM 通路的微观结构特性的特征化深度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd4b/7776010/0c3c45980621/HBM-42-310-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验