Suppr超能文献

基于模型的精神分裂症功能连接中断的动力学分析。

Model-based dynamical analysis of functional disconnection in schizophrenia.

机构信息

KFKI Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences, Budapest, Hungary.

出版信息

Neuroimage. 2011 Oct 1;58(3):870-7. doi: 10.1016/j.neuroimage.2011.06.046. Epub 2011 Jun 25.

Abstract

Schizophrenia is shown to be associated with impaired interactions in functional macro-networks of the brain. The focus of our study was if there is an impairment of cognitive control of learning during schizophrenia. To investigate this question, we collected fMRI data from a group of stable schizophrenia patients and controls performing an object-location associative learning task in which the learning performance of the patient group was significantly worse. We applied Dynamic Causal Modeling to analyze the fMRI data. A set of causal models of BOLD signal generation was defined to evaluate connections between five regions material to the task (Primary Visual Cortex, Superior Parietal and Inferior Temporal Cortex, Hippocampus and Dorsal Prefrontal Cortex). Bayesian model selection was used to investigate hypotheses on differences in model architecture across groups, and indicated fundamental differences in model architecture in patients compared to controls. Models lacking connections related to cognitive control were more probable in the patient group. Hypotheses on differences in effective connectivity between groups were tested by comparing estimates of neural coupling parameters in winning model structures. This analysis indicated reduced fronto-hippocampal and hippocampo-inferior temporal coupling in patients, and reduced excitatory modulation of these pathways by learning. These findings may account for the documented reductions in learning performance of schizophrenia patients.

摘要

精神分裂症与大脑功能宏观网络中的交互作用受损有关。我们研究的重点是精神分裂症患者是否存在学习认知控制的损伤。为了探究这个问题,我们采集了一组稳定的精神分裂症患者和对照组在进行物体-位置联想学习任务时的 fMRI 数据,患者组的学习表现明显更差。我们应用动态因果建模来分析 fMRI 数据。定义了一组 BOLD 信号生成的因果模型,以评估对任务至关重要的五个区域(初级视觉皮层、顶叶和颞叶下区、海马体和背外侧前额叶皮层)之间的连接。贝叶斯模型选择用于研究组间模型结构差异的假设,并表明患者组与对照组在模型结构上存在根本差异。在患者组中,缺乏与认知控制相关的连接的模型更有可能。通过比较获胜模型结构中的神经耦合参数估计值,检验了组间有效连接差异的假设。这项分析表明,患者的额-海马和海马-颞下连接减少,以及这些通路的学习兴奋性调节减少。这些发现可能解释了精神分裂症患者学习表现下降的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61e9/3221737/9f3b96776190/nihms308117f1.jpg

相似文献

引用本文的文献

6
Network Path Convergence Shapes Low-Level Processing in the Visual Cortex.网络路径汇聚塑造视觉皮层中的低级处理过程。
Front Syst Neurosci. 2021 May 24;15:645709. doi: 10.3389/fnsys.2021.645709. eCollection 2021.
7
Ocular measures during associative learning predict recall accuracy.在联想学习过程中的眼部测量可预测回忆的准确性。
Int J Psychophysiol. 2021 Aug;166:103-115. doi: 10.1016/j.ijpsycho.2021.05.010. Epub 2021 May 27.

本文引用的文献

1
Functional connectivity and brain networks in schizophrenia.精神分裂症的功能连接和脑网络。
J Neurosci. 2010 Jul 14;30(28):9477-87. doi: 10.1523/JNEUROSCI.0333-10.2010.
4
Ten simple rules for dynamic causal modeling.动态因果建模的 10 个简单规则。
Neuroimage. 2010 Feb 15;49(4):3099-109. doi: 10.1016/j.neuroimage.2009.11.015. Epub 2009 Nov 12.
5
Functional brain networks in schizophrenia: a review.精神分裂症中的功能性脑网络:综述
Front Hum Neurosci. 2009 Aug 17;3:17. doi: 10.3389/neuro.09.017.2009. eCollection 2009.
7
Prefrontal activation deficits during episodic memory in schizophrenia.精神分裂症患者情景记忆过程中的前额叶激活缺陷
Am J Psychiatry. 2009 Aug;166(8):863-74. doi: 10.1176/appi.ajp.2009.08091307. Epub 2009 May 1.
9
Bayesian model selection for group studies.群体研究的贝叶斯模型选择
Neuroimage. 2009 Jul 15;46(4):1004-17. doi: 10.1016/j.neuroimage.2009.03.025. Epub 2009 Mar 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验