Roy Dipanjan, Ghosh Anandamohan, Jirsa Viktor K
Theoretical Neuroscience Group, Institut des Sciences du Mouvement, UMR6233 CNRS and Université de la Méditerranée, Marseille, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051909. doi: 10.1103/PhysRevE.83.051909. Epub 2011 May 11.
Phase models are among the simplest neuron models reproducing spiking behavior, excitability, and bifurcations toward periodic firing. However, coupling among neurons has been considered only using generic arguments valid close to the bifurcation point, and the differentiation between electric and synaptic coupling remains an open question. In this work we aim to address this question and derive a mathematical formulation for the various forms of coupling. We construct a mathematical model based on a planar simplification of the Morris-Lecar model. Based on geometric arguments we then derive a phase description of a network of the above oscillators with biologically realistic electric coupling and subsequently with chemical coupling under fast synapse approximation. We demonstrate analytically that electric and synaptic coupling are differently expressed on the level of the network's phase description with qualitatively different dynamics. Our mathematical analysis shows that a breaking of the translational symmetry in the phase flows is responsible for the different bifurcations paths of electric and synaptic coupling. Our numerical investigations confirm these findings and show excellent correspondence between the dynamics of the full network and the network's phase description.
相位模型是能够再现尖峰行为、兴奋性以及向周期性放电转变的最简单的神经元模型之一。然而,神经元之间的耦合仅在接近分岔点时使用通用论据进行了考虑,并且电耦合和突触耦合之间的区别仍然是一个悬而未决的问题。在这项工作中,我们旨在解决这个问题,并推导各种耦合形式的数学公式。我们基于Morris-Lecar模型的平面简化构建了一个数学模型。基于几何论据,我们随后推导了具有生物现实电耦合的上述振荡器网络的相位描述,以及在快速突触近似下具有化学耦合的相位描述。我们通过分析证明,电耦合和突触耦合在网络相位描述层面上以定性不同的动力学表现出不同的表达方式。我们的数学分析表明,相位流中平移对称性的破坏是电耦合和突触耦合不同分岔路径的原因。我们的数值研究证实了这些发现,并表明完整网络的动力学与网络相位描述之间具有出色的一致性。