Suppr超能文献

分离动态生物系统中的内禀和外禀波动。

Separating intrinsic from extrinsic fluctuations in dynamic biological systems.

机构信息

Department of Systems Biology, Harvard University, 200 Longwood Avenue, Boston, MA 02115, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12167-72. doi: 10.1073/pnas.1018832108. Epub 2011 Jul 5.

Abstract

From molecules in cells to organisms in ecosystems, biological populations fluctuate due to the intrinsic randomness of individual events and the extrinsic influence of changing environments. The combined effect is often too complex for effective analysis, and many studies therefore make simplifying assumptions, for example ignoring either intrinsic or extrinsic effects to reduce the number of model assumptions. Here we mathematically demonstrate how two identical and independent reporters embedded in a shared fluctuating environment can be used to identify intrinsic and extrinsic noise terms, but also how these contributions are qualitatively and quantitatively different from what has been previously reported. Furthermore, we show for which classes of biological systems the noise contributions identified by dual-reporter methods correspond to the noise contributions predicted by correct stochastic models of either intrinsic or extrinsic mechanisms. We find that for broad classes of systems, the extrinsic noise from the dual-reporter method can be rigorously analyzed using models that ignore intrinsic stochasticity. In contrast, the intrinsic noise can be rigorously analyzed using models that ignore extrinsic stochasticity only under very special conditions that rarely hold in biology. Testing whether the conditions are met is rarely possible and the dual-reporter method may thus produce flawed conclusions about the properties of the system, particularly about the intrinsic noise. Our results contribute toward establishing a rigorous framework to analyze dynamically fluctuating biological systems.

摘要

从细胞中的分子到生态系统中的生物体,由于个体事件的固有随机性和不断变化的环境的外在影响,生物种群会发生波动。这种综合影响通常过于复杂,难以进行有效分析,因此许多研究都做出了简化假设,例如忽略内在或外在影响,以减少模型假设的数量。在这里,我们从数学上证明了如何将两个相同且独立的报告器嵌入到共享的波动环境中,以识别内在和外在噪声项,但也说明了这些贡献与之前报道的有何不同。此外,我们还展示了双报告器方法所确定的噪声贡献与内在或外在机制的正确随机模型所预测的噪声贡献在哪些类别的生物系统中是对应的。我们发现,对于广泛的系统类别,双报告器方法的外在噪声可以使用忽略内在随机性的模型进行严格分析。相比之下,只有在生物学中很少出现的非常特殊的条件下,才可以使用忽略外在随机性的模型对内在噪声进行严格分析。很少有机会可以验证这些条件是否得到满足,因此双报告器方法可能会对系统的特性(尤其是内在噪声)产生有缺陷的结论。我们的研究结果有助于建立一个严格的框架来分析动态波动的生物系统。

相似文献

1
Separating intrinsic from extrinsic fluctuations in dynamic biological systems.分离动态生物系统中的内禀和外禀波动。
Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12167-72. doi: 10.1073/pnas.1018832108. Epub 2011 Jul 5.
7
10
Robustness analysis of stochastic biochemical systems.随机生化系统的鲁棒性分析
PLoS One. 2014 Apr 21;9(4):e94553. doi: 10.1371/journal.pone.0094553. eCollection 2014.

引用本文的文献

本文引用的文献

4
Functional roles for noise in genetic circuits.遗传回路中噪声的功能作用。
Nature. 2010 Sep 9;467(7312):167-73. doi: 10.1038/nature09326.
5
Information processing by biochemical networks: a dynamic approach.生物化学网络的信息处理:一种动态方法。
J R Soc Interface. 2011 Feb 6;8(55):186-200. doi: 10.1098/rsif.2010.0287. Epub 2010 Aug 4.
8
Systems biology of stem cell fate and cellular reprogramming.干细胞命运与细胞重编程的系统生物学
Nat Rev Mol Cell Biol. 2009 Oct;10(10):672-81. doi: 10.1038/nrm2766. Epub 2009 Sep 9.
10
Quantifying origins of cell-to-cell variations in gene expression.量化基因表达中细胞间变异的起源。
Biophys J. 2008 Nov 15;95(10):4523-8. doi: 10.1529/biophysj.107.127035. Epub 2008 Aug 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验