Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
PLoS Comput Biol. 2011 Jun;7(6):e1002075. doi: 10.1371/journal.pcbi.1002075. Epub 2011 Jun 23.
From ants to humans, the timing of many animal behaviors comes in bursts of activity separated by long periods of inactivity. Recently, mathematical modeling has shown that simple algorithms of priority-driven behavioral choice can result in bursty behavior. To experimentally test this link between decision-making circuitry and bursty dynamics, we have turned to Drosophila melanogaster. We have found that the statistics of intervals between activity periods in endogenous activity-rest switches of wild-type Drosophila are very well described by the Weibull distribution, a common distribution of bursty dynamics in complex systems. The bursty dynamics of wild-type Drosophila walking activity are shown to be determined by this inter-event distribution alone and not by memory effects, thus resembling human dynamics. Further, using mutant flies that disrupt dopaminergic signaling or the mushroom body, circuitry implicated in decision-making, we show that the degree of behavioral burstiness can be modified. These results are thus consistent with the proposed link between decision-making circuitry and bursty dynamics, and highlight the importance of using simple experimental systems to test general theoretical models of behavior. The findings further suggest that analysis of bursts could prove useful for the study and evaluation of decision-making circuitry.
从蚂蚁到人,许多动物行为的时间都以活动的爆发为特征,这些活动爆发之间是长时间的不活跃期。最近,数学建模表明,基于优先级驱动的行为选择的简单算法可以产生爆发行为。为了实验测试决策电路和爆发动力学之间的这种联系,我们转向了黑腹果蝇。我们发现,野生型果蝇内源性活动-休息开关中活动期之间间隔的统计数据非常符合威布尔分布,这是复杂系统中爆发动力学的常见分布。野生型果蝇行走活动的爆发动力学仅由事件间分布决定,而不受记忆效应影响,因此类似于人类动力学。此外,使用破坏多巴胺能信号或蘑菇体(与决策相关的电路)的突变果蝇,我们表明行为爆发的程度可以被修饰。因此,这些结果与决策电路和爆发动力学之间的提议联系一致,并强调了使用简单的实验系统来测试行为的一般理论模型的重要性。这些发现进一步表明,对爆发的分析可能有助于研究和评估决策电路。