Suppr超能文献

纹状体对线粒体氧化磷酸化功能障碍非常敏感。

The striatum is highly susceptible to mitochondrial oxidative phosphorylation dysfunctions.

机构信息

Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, Florida 33133, USA.

出版信息

J Neurosci. 2011 Jul 6;31(27):9895-904. doi: 10.1523/JNEUROSCI.6223-10.2011.

Abstract

Neuronal oxidative phosphorylation (OXPHOS) deficiency has been associated with a variety of neurodegenerative diseases, including Parkinson's disease and Huntington's disease. However, it is not clear how mitochondrial dysfunction alone can lead to a preferential elimination of certain neuronal populations in vivo. We compared different types of neuronal populations undergoing the same OXPHOS deficiency to determine their relative susceptibility and mechanisms responsible for selective neuron vulnerability. We used a mouse model expressing a mitochondria-targeted restriction enzyme, PstI or mito-PstI. The expression of mito-PstI induces double-strand breaks in the mitochondrial DNA (mtDNA), leading to OXPHOS deficiency, mostly due to mtDNA depletion. We targeted mito-PstI expression to the cortex, hippocampus, and striatum under the CaMKII-α promoter. Animals undergoing long-term expression of mito-PstI displayed a selective worsening of the striatum over cortical and hippocampal areas. Mito-PstI expression and mtDNA depletion were not worse in the striatum, but the latter showed the most severe defects in mitochondrial membrane potential, response to calcium, and survival. These results showed that the striatum is particularly sensitive to defects in OXPHOS possibly due to an increased reliance on OXPHOS function in this area and differences in response to physiological stimuli. These results may help explain the neuropathological features associated with Huntington's disease, which have been associated with OXPHOS defects.

摘要

神经元氧化磷酸化(OXPHOS)缺陷与多种神经退行性疾病有关,包括帕金森病和亨廷顿病。然而,目前尚不清楚线粒体功能障碍如何单独导致体内某些神经元群体的优先消除。我们比较了经历相同 OXPHOS 缺陷的不同类型的神经元群体,以确定它们的相对易感性和导致选择性神经元易损性的机制。我们使用表达靶向线粒体的限制性内切酶 PstI 或 mito-PstI 的小鼠模型。mito-PstI 的表达会导致线粒体 DNA(mtDNA)中的双链断裂,从而导致 OXPHOS 缺陷,主要是由于 mtDNA 耗竭。我们在 CaMKII-α 启动子下将 mito-PstI 表达靶向皮质、海马和纹状体。长期表达 mito-PstI 的动物表现出纹状体比皮质和海马区选择性恶化。纹状体中的 mito-PstI 表达和 mtDNA 耗竭并不严重,但后者的线粒体膜电位、钙反应和存活能力缺陷最为严重。这些结果表明,纹状体对 OXPHOS 缺陷特别敏感,可能是由于该区域对 OXPHOS 功能的依赖性增加以及对生理刺激的反应不同。这些结果可能有助于解释与亨廷顿病相关的神经病理学特征,这些特征与 OXPHOS 缺陷有关。

相似文献

4
5
Significance of Mitochondria DNA Mutations in Diseases.线粒体 DNA 突变在疾病中的意义。
Adv Exp Med Biol. 2017;1038:219-230. doi: 10.1007/978-981-10-6674-0_15.

引用本文的文献

3
Mitochondrial heterogeneity and adaptations to cellular needs.线粒体异质性与细胞需求的适应
Nat Cell Biol. 2024 May;26(5):674-686. doi: 10.1038/s41556-024-01410-1. Epub 2024 May 16.
6
Targeting N-type calcium channels in young-onset of some neurological diseases.针对某些早发性神经系统疾病中的N型钙通道。
Front Cell Dev Biol. 2022 Dec 19;10:1090765. doi: 10.3389/fcell.2022.1090765. eCollection 2022.

本文引用的文献

3
Neuroprotective role of lactate after cerebral ischemia.脑缺血后乳酸的神经保护作用。
J Cereb Blood Flow Metab. 2009 Nov;29(11):1780-9. doi: 10.1038/jcbfm.2009.97. Epub 2009 Jul 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验