Graduate Group in Biochemistry and Molecular Biophysics and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059, USA.
J Biomol NMR. 2011 Aug;50(4):421-30. doi: 10.1007/s10858-011-9528-y. Epub 2011 Jul 12.
Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ~23 to ~10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 43 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect.
综合应用溶液 NMR 光谱学来研究大分子仍然受到分子旋转相关时间的根本限制。对于蛋白质,大于 30 kDa 的分子需要复杂的实验方法,例如 TROSY 与通常昂贵且通常会降低潜在信息可用性的同位素标记方案结合使用。我们已经开发了反胶束包封策略作为替代方法。将蛋白质包封在反胶束的保护性纳米级水相中,该反胶束溶解在超低粘度非极性溶剂中,克服了大蛋白质缓慢翻滚的问题。在这里,我们表征了含蛋白质的反胶束系统的各个组成部分对包封蛋白质的旋转相关时间的贡献。重要的是,我们证明了包封在反胶束中的蛋白质保持与在体相溶液中相当的水合壳大小。使用中等压力,在超低粘度丙烷或乙烷中的包封可用于放大此优势。我们表明,在液体乙烷中的包封可用于将 43 kDa 麦芽糖结合蛋白的翻滚时间从约 23 减少到约 10 ns。这些条件使得,例如,对于溶解在液体乙烷中的 43 kDa 包封麦芽糖结合蛋白,可以获得在相邻酰胺 NH 上解析的 TOCSY 型数据,而对于如此大小的蛋白质,如果不使用广泛的氘化或 TROSY 效应,则通常无法获得。