Department of Educational Sciences, Katholieke Universiteit Leuven, Andreas Vesaliusstraat 2, B-3000 Leuven, Belgium.
Behav Res Methods. 2012 Mar;44(1):41-56. doi: 10.3758/s13428-011-0129-1.
To explore structural differences and similarities in multivariate multiblock data (e.g., a number of variables have been measured for different groups of subjects, where the data for each group constitute a different data block), researchers have a variety of multiblock component analysis and factor analysis strategies at their disposal. In this article, we focus on three types of multiblock component methods--namely, principal component analysis on each data block separately, simultaneous component analysis, and the recently proposed clusterwise simultaneous component analysis, which is a generic and flexible approach that has no counterpart in the factor analysis tradition. We describe the steps to take when applying those methods in practice. Whereas plenty of software is available for fitting factor analysis solutions, up to now no easy-to-use software has existed for fitting these multiblock component analysis methods. Therefore, this article presents the MultiBlock Component Analysis program, which also includes procedures for missing data imputation and model selection.
为了探索多元多区块数据(例如,对不同组别的主体进行了多个变量的测量,其中每个组别的数据构成不同的数据块)中的结构差异和相似性,研究人员可以采用各种多元组件分析和因子分析策略。在本文中,我们重点介绍三种类型的多元组件方法,即分别对每个数据块进行主成分分析、同时成分分析以及最近提出的聚类同时成分分析,这是一种通用且灵活的方法,在因子分析传统中没有对应的方法。我们描述了在实践中应用这些方法时需要采取的步骤。虽然有很多软件可用于拟合因子分析解决方案,但到目前为止,还没有易于使用的软件可用于拟合这些多元组件分析方法。因此,本文介绍了 MultiBlock Component Analysis 程序,它还包括缺失数据插补和模型选择的过程。