Suppr超能文献

如何在实践中进行多区块成分分析。

How to perform multiblock component analysis in practice.

机构信息

Department of Educational Sciences, Katholieke Universiteit Leuven, Andreas Vesaliusstraat 2, B-3000 Leuven, Belgium.

出版信息

Behav Res Methods. 2012 Mar;44(1):41-56. doi: 10.3758/s13428-011-0129-1.

Abstract

To explore structural differences and similarities in multivariate multiblock data (e.g., a number of variables have been measured for different groups of subjects, where the data for each group constitute a different data block), researchers have a variety of multiblock component analysis and factor analysis strategies at their disposal. In this article, we focus on three types of multiblock component methods--namely, principal component analysis on each data block separately, simultaneous component analysis, and the recently proposed clusterwise simultaneous component analysis, which is a generic and flexible approach that has no counterpart in the factor analysis tradition. We describe the steps to take when applying those methods in practice. Whereas plenty of software is available for fitting factor analysis solutions, up to now no easy-to-use software has existed for fitting these multiblock component analysis methods. Therefore, this article presents the MultiBlock Component Analysis program, which also includes procedures for missing data imputation and model selection.

摘要

为了探索多元多区块数据(例如,对不同组别的主体进行了多个变量的测量,其中每个组别的数据构成不同的数据块)中的结构差异和相似性,研究人员可以采用各种多元组件分析和因子分析策略。在本文中,我们重点介绍三种类型的多元组件方法,即分别对每个数据块进行主成分分析、同时成分分析以及最近提出的聚类同时成分分析,这是一种通用且灵活的方法,在因子分析传统中没有对应的方法。我们描述了在实践中应用这些方法时需要采取的步骤。虽然有很多软件可用于拟合因子分析解决方案,但到目前为止,还没有易于使用的软件可用于拟合这些多元组件分析方法。因此,本文介绍了 MultiBlock Component Analysis 程序,它还包括缺失数据插补和模型选择的过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验