Suppr超能文献

用于分析多元多区块数据结构差异的聚类同时成分分析。

Clusterwise simultaneous component analysis for analyzing structural differences in multivariate multiblock data.

机构信息

Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.

出版信息

Psychol Methods. 2012 Mar;17(1):100-19. doi: 10.1037/a0025385. Epub 2011 Oct 3.

Abstract

Many studies yield multivariate multiblock data, that is, multiple data blocks that all involve the same set of variables (e.g., the scores of different groups of subjects on the same set of variables). The question then rises whether the same processes underlie the different data blocks. To explore the structure of such multivariate multiblock data, component analysis can be very useful. Specifically, 2 approaches are often applied: principal component analysis (PCA) on each data block separately and different variants of simultaneous component analysis (SCA) on all data blocks simultaneously. The PCA approach yields a different loading matrix for each data block and is thus not useful for discovering structural similarities. The SCA approach may fail to yield insight into structural differences, since the obtained loading matrix is identical for all data blocks. We introduce a new generic modeling strategy, called clusterwise SCA, that comprises the separate PCA approach and SCA as special cases. The key idea behind clusterwise SCA is that the data blocks form a few clusters, where data blocks that belong to the same cluster are modeled with SCA and thus have the same structure, and different clusters have different underlying structures. In this article, we use the SCA variant that imposes equal average cross-products constraints (ECP). An algorithm for fitting clusterwise SCA-ECP solutions is proposed and evaluated in a simulation study. Finally, the usefulness of clusterwise SCA is illustrated by empirical examples from eating disorder research and social psychology.

摘要

许多研究产生了多元多区块数据,即多个数据块都涉及相同的变量集(例如,同一组变量上的不同组主体的分数)。那么问题就来了,不同的数据块是否存在相同的过程。为了探索这种多元多区块数据的结构,成分分析可能非常有用。具体来说,通常应用两种方法:分别对每个数据块进行主成分分析(PCA)和同时对所有数据块进行同时成分分析(SCA)的不同变体。PCA 方法为每个数据块生成不同的加载矩阵,因此对于发现结构相似性没有用处。SCA 方法可能无法深入了解结构差异,因为对于所有数据块,获得的加载矩阵是相同的。我们引入了一种新的通用建模策略,称为聚类 SCA,它包含了单独的 PCA 方法和 SCA 作为特例。聚类 SCA 的关键思想是数据块形成几个簇,属于同一簇的数据块使用 SCA 进行建模,因此具有相同的结构,而不同的簇具有不同的底层结构。在本文中,我们使用施加相等平均交叉乘积约束(ECP)的 SCA 变体。提出了一种拟合聚类 SCA-ECP 解的算法,并在模拟研究中进行了评估。最后,通过饮食失调研究和社会心理学的实证示例说明了聚类 SCA 的有用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验