Suppr超能文献

预测毒理学中的数据治理:综述。

Data governance in predictive toxicology: A review.

机构信息

School of Computing, Informatics and Media, Richmond Road, Bradford, BD7 1DP, UK.

出版信息

J Cheminform. 2011 Jul 13;3(1):24. doi: 10.1186/1758-2946-3-24.

Abstract

BACKGROUND

Due to recent advances in data storage and sharing for further data processing in predictive toxicology, there is an increasing need for flexible data representations, secure and consistent data curation and automated data quality checking. Toxicity prediction involves multidisciplinary data. There are hundreds of collections of chemical, biological and toxicological data that are widely dispersed, mostly in the open literature, professional research bodies and commercial companies. In order to better manage and make full use of such large amount of toxicity data, there is a trend to develop functionalities aiming towards data governance in predictive toxicology to formalise a set of processes to guarantee high data quality and better data management. In this paper, data quality mainly refers in a data storage sense (e.g. accuracy, completeness and integrity) and not in a toxicological sense (e.g. the quality of experimental results).

RESULTS

This paper reviews seven widely used predictive toxicology data sources and applications, with a particular focus on their data governance aspects, including: data accuracy, data completeness, data integrity, metadata and its management, data availability and data authorisation. This review reveals the current problems (e.g. lack of systematic and standard measures of data quality) and desirable needs (e.g. better management and further use of captured metadata and the development of flexible multi-level user access authorisation schemas) of predictive toxicology data sources development. The analytical results will help to address a significant gap in toxicology data quality assessment and lead to the development of novel frameworks for predictive toxicology data and model governance.

CONCLUSIONS

While the discussed public data sources are well developed, there nevertheless remain some gaps in the development of a data governance framework to support predictive toxicology. In this paper, data governance is identified as the new challenge in predictive toxicology, and a good use of it may provide a promising framework for developing high quality and easy accessible toxicity data repositories. This paper also identifies important research directions that require further investigation in this area.

摘要

背景

由于数据存储和共享技术的进步,预测毒理学可以进一步进行数据处理,因此对于灵活的数据表示、安全一致的数据管理以及自动的数据质量检查的需求不断增加。毒性预测涉及多学科数据。有数百个化学、生物和毒理学数据的集合广泛分散,主要在开放文献、专业研究机构和商业公司中。为了更好地管理和充分利用如此大量的毒性数据,预测毒理学领域有一种发展数据治理功能的趋势,旨在将一套流程正式化,以保证数据质量并改善数据管理。在本文中,数据质量主要是指在数据存储意义上(例如准确性、完整性和一致性),而不是在毒理学意义上(例如实验结果的质量)。

结果

本文综述了七种广泛使用的预测毒理学数据源和应用,特别关注它们的数据治理方面,包括:数据准确性、数据完整性、数据完整性、元数据及其管理、数据可用性和数据授权。这一综述揭示了预测毒理学数据源开发当前存在的问题(例如缺乏数据质量的系统和标准衡量方法)和所需的改进(例如更好地管理和进一步利用捕获的元数据以及开发灵活的多层次用户访问授权模式)。分析结果将有助于解决毒理学数据质量评估中的重大差距,并为预测毒理学数据和模型治理开发新的框架。

结论

虽然讨论的公共数据源已经得到很好的开发,但在支持预测毒理学的数据治理框架的开发方面仍存在一些差距。在本文中,数据治理被确定为预测毒理学的新挑战,对其的良好利用可能为开发高质量和易于访问的毒性数据存储库提供一个有前途的框架。本文还确定了该领域需要进一步研究的重要研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/419f/3584675/8f427c0db7cc/1758-2946-3-24-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验