Suppr超能文献

仿生肢体的连续神经控制可在截肢后恢复仿生步态。

Continuous neural control of a bionic limb restores biomimetic gait after amputation.

机构信息

K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA.

Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nat Med. 2024 Jul;30(7):2010-2019. doi: 10.1038/s41591-024-02994-9. Epub 2024 Jul 1.

Abstract

For centuries scientists and technologists have sought artificial leg replacements that fully capture the versatility of their intact biological counterparts. However, biological gait requires coordinated volitional and reflexive motor control by complex afferent and efferent neural interplay, making its neuroprosthetic emulation challenging after limb amputation. Here we hypothesize that continuous neural control of a bionic limb can restore biomimetic gait after below-knee amputation when residual muscle afferents are augmented. To test this hypothesis, we present a neuroprosthetic interface consisting of surgically connected, agonist-antagonist muscles including muscle-sensing electrodes. In a cohort of seven leg amputees, the interface is shown to augment residual muscle afferents by 18% of biologically intact values. Compared with a matched amputee cohort without the afferent augmentation, the maximum neuroprosthetic walking speed is increased by 41%, enabling equivalent peak speeds to persons without leg amputation. Further, this level of afferent augmentation enables biomimetic adaptation to various walking speeds and real-world environments, including slopes, stairs and obstructed pathways. Our results suggest that even a small augmentation of residual muscle afferents restores biomimetic gait under continuous neuromodulation in individuals with leg amputation.

摘要

几个世纪以来,科学家和技术专家一直在寻找能够完全模拟其完整生物对应物的多功能性的人工腿部替代品。然而,生物步态需要通过复杂的传入和传出神经相互作用进行协调的意志和反射性运动控制,这使得在截肢后对其进行神经假体模拟具有挑战性。在这里,我们假设仿生腿的连续神经控制可以在残肢肌肉传入增加时恢复膝下截肢后的仿生步态。为了验证这一假设,我们提出了一种神经假体接口,该接口由手术连接的、包括肌肉感应电极的拮抗肌组成。在七名腿部截肢者的队列中,该接口被证明可以将残留的肌肉传入增加 18%,达到生物完整值。与没有传入增强的匹配截肢者队列相比,神经假体最大步行速度增加了 41%,使得与没有腿部截肢的人具有相同的峰值速度。此外,这种程度的传入增强使适应各种步行速度和现实环境成为可能,包括斜坡、楼梯和障碍物路径。我们的结果表明,即使是对残留肌肉传入的微小增强,也可以在腿部截肢者的连续神经调节下恢复仿生步态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a95/11271427/2fe2f85eaa2e/41591_2024_2994_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验