CNR-IAMC Localita Sa Mardini, 09072 Torregrande (Or), Italy.
J Exp Biol. 2011 Aug 1;214(Pt 15):2463-73. doi: 10.1242/jeb.029652.
Escape responses are used by many animal species as their main defence against predator attacks. Escape success is determined by a number of variables; important are the directionality (the percentage of responses directed away from the threat) and the escape trajectories (ETs) measured relative to the threat. Although logic would suggest that animals should always turn away from a predator, work on various species shows that these away responses occur only approximately 50-90% of the time. A small proportion of towards responses may introduce some unpredictability and may be an adaptive feature of the escape system. Similar issues apply to ETs. Theoretically, an optimal ET can be modelled on the geometry of predator-prey encounters. However, unpredictability (and hence high variability) in trajectories may be necessary for preventing predators from learning a simple escape pattern. This review discusses the emerging trends in escape trajectories, as well as the modulating key factors, such as the surroundings and body design. The main ET patterns identified are: (1) high ET variability within a limited angular sector (mainly 90-180 deg away from the threat; this variability is in some cases based on multiple peaks of ETs), (2) ETs that allow sensory tracking of the threat and (3) ETs towards a shelter. These characteristic features are observed across various taxa and, therefore, their expression may be mainly related to taxon-independent animal design features and to the environmental context in which prey live - for example whether the immediate surroundings of the prey provide potential refuges.
逃避反应是许多动物物种用来防御捕食者攻击的主要方式。逃避的成功取决于许多变量;重要的是方向性(远离威胁的反应比例)和相对于威胁的逃避轨迹(ETs)。虽然逻辑上认为动物应该总是远离捕食者,但对各种物种的研究表明,这些回避反应只发生在大约 50-90%的时间。一小部分朝向反应可能会带来一些不可预测性,并且可能是逃避系统的适应性特征。类似的问题也适用于 ETs。从理论上讲,可以根据捕食者-猎物相遇的几何形状来模拟最佳 ET。然而,轨迹的不可预测性(因此具有高度可变性)对于防止捕食者学习简单的逃避模式可能是必要的。本文综述了逃避轨迹的新兴趋势,以及调节关键因素,如周围环境和身体设计。确定的主要 ET 模式有:(1) 在有限的角度扇区内的高 ET 可变性(主要是远离威胁的 90-180 度;这种可变性在某些情况下基于多个 ET 峰值),(2) 允许对威胁进行感官跟踪的 ETs,以及 (3) 朝向避难所的 ETs。这些特征在各种分类群中都有观察到,因此,它们的表达可能主要与与分类无关的动物设计特征以及猎物生活的环境背景有关,例如猎物周围的环境是否提供潜在的避难所。