Suppr超能文献

动物逃脱学 I:逃脱轨迹中的理论问题与新兴趋势。

Animal escapology I: theoretical issues and emerging trends in escape trajectories.

机构信息

CNR-IAMC Localita Sa Mardini, 09072 Torregrande (Or), Italy.

出版信息

J Exp Biol. 2011 Aug 1;214(Pt 15):2463-73. doi: 10.1242/jeb.029652.

Abstract

Escape responses are used by many animal species as their main defence against predator attacks. Escape success is determined by a number of variables; important are the directionality (the percentage of responses directed away from the threat) and the escape trajectories (ETs) measured relative to the threat. Although logic would suggest that animals should always turn away from a predator, work on various species shows that these away responses occur only approximately 50-90% of the time. A small proportion of towards responses may introduce some unpredictability and may be an adaptive feature of the escape system. Similar issues apply to ETs. Theoretically, an optimal ET can be modelled on the geometry of predator-prey encounters. However, unpredictability (and hence high variability) in trajectories may be necessary for preventing predators from learning a simple escape pattern. This review discusses the emerging trends in escape trajectories, as well as the modulating key factors, such as the surroundings and body design. The main ET patterns identified are: (1) high ET variability within a limited angular sector (mainly 90-180 deg away from the threat; this variability is in some cases based on multiple peaks of ETs), (2) ETs that allow sensory tracking of the threat and (3) ETs towards a shelter. These characteristic features are observed across various taxa and, therefore, their expression may be mainly related to taxon-independent animal design features and to the environmental context in which prey live - for example whether the immediate surroundings of the prey provide potential refuges.

摘要

逃避反应是许多动物物种用来防御捕食者攻击的主要方式。逃避的成功取决于许多变量;重要的是方向性(远离威胁的反应比例)和相对于威胁的逃避轨迹(ETs)。虽然逻辑上认为动物应该总是远离捕食者,但对各种物种的研究表明,这些回避反应只发生在大约 50-90%的时间。一小部分朝向反应可能会带来一些不可预测性,并且可能是逃避系统的适应性特征。类似的问题也适用于 ETs。从理论上讲,可以根据捕食者-猎物相遇的几何形状来模拟最佳 ET。然而,轨迹的不可预测性(因此具有高度可变性)对于防止捕食者学习简单的逃避模式可能是必要的。本文综述了逃避轨迹的新兴趋势,以及调节关键因素,如周围环境和身体设计。确定的主要 ET 模式有:(1) 在有限的角度扇区内的高 ET 可变性(主要是远离威胁的 90-180 度;这种可变性在某些情况下基于多个 ET 峰值),(2) 允许对威胁进行感官跟踪的 ETs,以及 (3) 朝向避难所的 ETs。这些特征在各种分类群中都有观察到,因此,它们的表达可能主要与与分类无关的动物设计特征以及猎物生活的环境背景有关,例如猎物周围的环境是否提供潜在的避难所。

相似文献

1
Animal escapology I: theoretical issues and emerging trends in escape trajectories.
J Exp Biol. 2011 Aug 1;214(Pt 15):2463-73. doi: 10.1242/jeb.029652.
3
Animal escapology II: escape trajectory case studies.
J Exp Biol. 2011 Aug 1;214(Pt 15):2474-94. doi: 10.1242/jeb.053801.
4
Cockroaches keep predators guessing by using preferred escape trajectories.
Curr Biol. 2008 Nov 25;18(22):1792-6. doi: 10.1016/j.cub.2008.09.062. Epub 2008 Nov 13.
5
Escaping away from and towards a threat: the cockroach's strategy for staying alive.
Commun Integr Biol. 2009 Nov;2(6):497-500. doi: 10.4161/cib.2.6.9408.
6
How moths escape bats: predicting outcomes of predator-prey interactions.
J Exp Biol. 2016 Sep 1;219(Pt 17):2704-15. doi: 10.1242/jeb.137638. Epub 2016 Jun 23.
7
Automated escape system: identifying prey's kinematic and behavioral features critical for predator evasion.
J Exp Biol. 2024 May 15;227(10). doi: 10.1242/jeb.246772. Epub 2024 May 16.
8
Danger comes from all fronts: predator-dependent escape tactics of túngara frogs.
PLoS One. 2015 Apr 15;10(4):e0120546. doi: 10.1371/journal.pone.0120546. eCollection 2015.
9
Modeling escape success in terrestrial predator-prey interactions.
Integr Comp Biol. 2020 Aug 1;60(2):497-508. doi: 10.1093/icb/icaa070.
10
Dropping to escape: a review of an under-appreciated antipredator defence.
Biol Rev Camb Philos Soc. 2019 Apr;94(2):575-589. doi: 10.1111/brv.12466. Epub 2018 Oct 9.

引用本文的文献

1
Six-legged-bound: a newly described insect gait.
R Soc Open Sci. 2025 Jun 25;12(6):250143. doi: 10.1098/rsos.250143. eCollection 2025 Jun.
2
Light tuned to the avian eye elicits early detection and escape from an approaching aircraft.
R Soc Open Sci. 2025 Jun 4;12(6):250047. doi: 10.1098/rsos.250047. eCollection 2025 Jun.
5
Switching escape strategies in the parasitic ant cricket Myrmecophilus tetramorii.
Commun Biol. 2024 Dec 30;7(1):1714. doi: 10.1038/s42003-024-07368-y.
6
Controlling noisy herds.
ArXiv. 2025 Jan 21:arXiv:2406.06912v2.
7
Tonically active GABAergic neurons in the dorsal periaqueductal gray control instinctive escape in mice.
Curr Biol. 2024 Jul 8;34(13):3031-3039.e7. doi: 10.1016/j.cub.2024.05.068. Epub 2024 Jun 26.
8
Neuromuscular basis of larval rolling escape behavior.
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2303641120. doi: 10.1073/pnas.2303641120. Epub 2023 Dec 14.
9
Sex- and state-dependent covariation of risk-averse and escape behavior in a widespread lizard.
Ecol Evol. 2023 Dec 11;13(12):e10723. doi: 10.1002/ece3.10723. eCollection 2023 Dec.
10
Motor state changes escape behavior of crickets.
iScience. 2023 Jul 11;26(8):107345. doi: 10.1016/j.isci.2023.107345. eCollection 2023 Aug 18.

本文引用的文献

1
Protean defence by prey animals.
Oecologia. 1970 Dec;5(4):285-302. doi: 10.1007/BF00815496.
2
The function of the cercal sensory system in escape behavior of the cave cricket Troglophilus neglectus Krauss.
Pflugers Arch. 2000 Jan;439(Suppl 1):r187-r189. doi: 10.1007/s004240000140.
4
Animal escapology II: escape trajectory case studies.
J Exp Biol. 2011 Aug 1;214(Pt 15):2474-94. doi: 10.1242/jeb.053801.
5
Escaping away from and towards a threat: the cockroach's strategy for staying alive.
Commun Integr Biol. 2009 Nov;2(6):497-500. doi: 10.4161/cib.2.6.9408.
6
7
Lateralization in the escape behaviour of the common wall lizard (Podarcis muralis).
Behav Brain Res. 2010 Feb 11;207(1):1-6. doi: 10.1016/j.bbr.2009.09.002. Epub 2009 Sep 6.
8
Preparing for escape: anti-predator posture and fast-start performance in gobies.
J Exp Biol. 2009 Sep 15;212(18):2925-33. doi: 10.1242/jeb.032953.
9
Tentacled snakes turn C-starts to their advantage and predict future prey behavior.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11183-7. doi: 10.1073/pnas.0905183106. Epub 2009 Jun 19.
10
Transcriptional control of behavior: engrailed knock-out changes cockroach escape trajectories.
J Neurosci. 2009 Jun 3;29(22):7181-90. doi: 10.1523/JNEUROSCI.1374-09.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验