Hutton David W, Brandeau Margaret L, So Samuel K
Department of Management Science and Engineering, Stanford University, Stanford CA 94305.
Interfaces (Providence). 2011 May;41(3):289-300. doi: 10.1287/inte.1100.0511.
In an era of limited healthcare budgets, mathematical models can be useful tools to identify cost-effective programs and to support policymakers in informed decision making. This paper reports results of our work carried out over several years with the Asian Liver Center at Stanford University, a nonprofit outreach and advocacy organization that is an international leader in the fight against hepatitis B and liver cancer. Hepatitis B is a vaccine-preventable viral disease that, if untreated, can lead to death from cirrhosis and liver cancer. Infection with hepatitis B is a major public health problem, particularly in Asian populations. We used new combinations of decision analysis and Markov models to analyze the cost-effectiveness of several interventions to combat hepatitis B in the United States and China. The results of our OR-based analyses have helped change United States public health policy on hepatitis B screening for millions of people and have helped encourage policymakers in China to enact legislation to provide free catch-up vaccination for hundreds of millions of children. These policies are an important step in eliminating health disparities, reducing discrimination, and ensuring that millions of people who need it can now receive hepatitis B vaccination or lifesaving treatment.
在医疗保健预算有限的时代,数学模型可以成为识别具有成本效益的项目以及支持政策制定者做出明智决策的有用工具。本文报告了我们与斯坦福大学亚洲肝脏中心合作开展多年的工作成果。该中心是一个非营利性的外展和宣传组织,在抗击乙型肝炎和肝癌方面处于国际领先地位。乙型肝炎是一种可通过疫苗预防的病毒性疾病,如果不进行治疗,可能会导致因肝硬化和肝癌死亡。感染乙型肝炎是一个重大的公共卫生问题,在亚洲人群中尤为突出。我们使用决策分析和马尔可夫模型的新组合,来分析美国和中国几种抗击乙型肝炎干预措施的成本效益。我们基于运筹学的分析结果有助于改变美国针对数百万人的乙型肝炎筛查公共卫生政策,并有助于鼓励中国的政策制定者颁布立法,为数亿儿童提供免费补种疫苗。这些政策是消除健康差距、减少歧视以及确保数百万有需要的人现在能够接种乙型肝炎疫苗或接受救命治疗的重要一步。