Langs Georg, Samaras Dimitris, Paragios Nikos, Honorio Jean, Alia-Klein Nelly, Tomasi Dardo, Volkow Nora D, Goldstein Rita Z
Laboratoire de Mathématiques Appliquées aux Systèmes, Ecole Centrale de Paris, France.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):925-33. doi: 10.1007/978-3-540-85988-8_110.
In this paper we propose model maps to derive and represent the intrinsic functional geometry of a brain from functional magnetic resonance imaging (fMRI) data for a specific task. Model maps represent the coherence of behavior of individual fMRI-measurements for a set of observations, or a time sequence. The maps establish a relation between individual positions in the brain by encoding the blood oxygen level dependent (BOLD) signal over a time period in a Markov chain. They represent this relation by mapping spatial positions to a new metric space, the model map. In this map the Euclidean distance between two points relates to the joint modeling behavior of their signals and thus the co-dependencies of the corresponding signals. The map reflects the functional as opposed to the anatomical geometry of the brain. It provides a quantitative tool to explore and study global and local patterns of resource allocation in the brain. To demonstrate the merit of this representation, we report quantitative experimental results on 29 fMRI time sequences, each with sub-sequences corresponding to 4 different conditions for two groups of individuals. We demonstrate that drug abusers exhibit lower differentiation in brain interactivity between baseline and reward related tasks, which could not be quantified until now.
在本文中,我们提出了模型映射,以从功能磁共振成像(fMRI)数据中推导并呈现特定任务下大脑的内在功能几何结构。模型映射表示一组观测值或时间序列中各个fMRI测量值行为的一致性。这些映射通过在马尔可夫链中对一段时间内的血氧水平依赖(BOLD)信号进行编码,在大脑中的各个位置之间建立一种关系。它们通过将空间位置映射到一个新的度量空间——模型映射,来表示这种关系。在这个映射中,两点之间的欧几里得距离与它们信号的联合建模行为相关,从而与相应信号的共依赖性相关。该映射反映的是大脑的功能几何结构而非解剖几何结构。它提供了一种定量工具,用于探索和研究大脑中资源分配的全局和局部模式。为了证明这种表示方法的优点,我们报告了对29个fMRI时间序列的定量实验结果,每个时间序列都有对应两组个体4种不同条件的子序列。我们证明,药物滥用者在基线任务和奖励相关任务之间的大脑交互性差异较小,而这一点在此之前一直无法量化。