Suppr超能文献

微分同胚功能性脑表面对齐:功能恶魔算法

Diffeomorphic functional brain surface alignment: Functional demons.

作者信息

Nenning Karl-Heinz, Liu Hesheng, Ghosh Satrajit S, Sabuncu Mert R, Schwartz Ernst, Langs Georg

机构信息

Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria.

A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA.

出版信息

Neuroimage. 2017 Aug 1;156:456-465. doi: 10.1016/j.neuroimage.2017.04.028. Epub 2017 Apr 14.

Abstract

Aligning brain structures across individuals is a central prerequisite for comparative neuroimaging studies. Typically, registration approaches assume a strong association between the features used for alignment, such as macro-anatomy, and the variable observed, such as functional activation or connectivity. Here, we propose to use the structure of intrinsic resting state fMRI signal correlation patterns as a basis for alignment of the cortex in functional studies. Rather than assuming the spatial correspondence of functional structures between subjects, we have identified locations with similar connectivity profiles across subjects. We mapped functional connectivity relationships within the brain into an embedding space, and aligned the resulting maps of multiple subjects. We then performed a diffeomorphic alignment of the cortical surfaces, driven by the corresponding features in the joint embedding space. Results show that functional alignment based on resting state fMRI identifies functionally homologous regions across individuals with higher accuracy than alignment based on the spatial correspondence of anatomy. Further, functional alignment enables measurement of the strength of the anatomo-functional link across the cortex, and reveals the uneven distribution of this link. Stronger anatomo-functional dissociation was found in higher association areas compared to primary sensory- and motor areas. Functional alignment based on resting state features improves group analysis of task based functional MRI data, increasing statistical power and improving the delineation of task-specific core regions. Finally, a comparison of the anatomo-functional dissociation between cohorts is demonstrated with a group of left and right handed subjects.

摘要

在个体间对齐脑结构是比较神经影像学研究的核心前提。通常,配准方法假定用于对齐的特征(如大体解剖结构)与观察到的变量(如功能激活或连接性)之间存在紧密关联。在此,我们提议在功能研究中使用内在静息态功能磁共振成像(fMRI)信号相关模式的结构作为皮质对齐的基础。我们并非假定个体间功能结构的空间对应关系,而是识别出跨个体具有相似连接模式的位置。我们将脑内的功能连接关系映射到一个嵌入空间,并对齐多个个体的所得图谱。然后,在联合嵌入空间中相应特征的驱动下,对皮质表面进行微分同胚对齐。结果表明,基于静息态fMRI的功能对齐比基于解剖结构空间对应关系的对齐能更准确地识别个体间功能同源区域。此外,功能对齐能够测量整个皮质上解剖 - 功能联系的强度,并揭示这种联系的不均匀分布。与初级感觉和运动区域相比,在高级联合区域发现了更强的解剖 - 功能分离。基于静息态特征的功能对齐改善了基于任务的功能MRI数据的组分析,提高了统计功效并改善了任务特定核心区域的描绘。最后,通过一组左利手和右利手受试者展示了不同队列之间解剖 - 功能分离的比较。

相似文献

1
Diffeomorphic functional brain surface alignment: Functional demons.微分同胚功能性脑表面对齐:功能恶魔算法
Neuroimage. 2017 Aug 1;156:456-465. doi: 10.1016/j.neuroimage.2017.04.028. Epub 2017 Apr 14.
3
Large-scale sparse functional networks from resting state fMRI.静息态 fMRI 的大规模稀疏功能网络。
Neuroimage. 2017 Aug 1;156:1-13. doi: 10.1016/j.neuroimage.2017.05.004. Epub 2017 May 5.
10

引用本文的文献

4
BAYESIAN FUNCTIONAL REGISTRATION OF FMRI ACTIVATION MAPS.功能磁共振成像激活图的贝叶斯函数配准
Ann Appl Stat. 2022 Sep;16(3):1676-1699. doi: 10.1214/21-aoas1562. Epub 2022 Jul 19.
6
neuromaps: structural and functional interpretation of brain maps.神经图谱:脑图谱的结构和功能解释。
Nat Methods. 2022 Nov;19(11):1472-1479. doi: 10.1038/s41592-022-01625-w. Epub 2022 Oct 6.
7
Machine learning in neuroimaging: from research to clinical practice.神经影像学中的机器学习:从研究到临床实践。
Radiologie (Heidelb). 2022 Dec;62(Suppl 1):1-10. doi: 10.1007/s00117-022-01051-1. Epub 2022 Aug 31.
9
S3Reg: Superfast Spherical Surface Registration Based on Deep Learning.S3Reg:基于深度学习的超快速球面配准。
IEEE Trans Med Imaging. 2021 Aug;40(8):1964-1976. doi: 10.1109/TMI.2021.3069645. Epub 2021 Jul 30.
10
Unsupervised Learning for Spherical Surface Registration.用于球面配准的无监督学习
Mach Learn Med Imaging. 2020 Oct;12436:373-383. doi: 10.1007/978-3-030-59861-7_38. Epub 2020 Sep 29.

本文引用的文献

2
A multi-modal parcellation of human cerebral cortex.人类大脑皮层的多模态分区
Nature. 2016 Aug 11;536(7615):171-178. doi: 10.1038/nature18933. Epub 2016 Jul 20.
3
Parcellating cortical functional networks in individuals.在个体中划分皮质功能网络。
Nat Neurosci. 2015 Dec;18(12):1853-60. doi: 10.1038/nn.4164. Epub 2015 Nov 9.
8
Fast Optimal Transport Averaging of Neuroimaging Data.神经影像数据的快速最优传输平均法
Inf Process Med Imaging. 2015;24:261-72. doi: 10.1007/978-3-319-19992-4_20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验