Suppr超能文献

发现 fMRI 选择性特征空间中的结构。

Discovering structure in the space of fMRI selectivity profiles.

机构信息

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Neuroimage. 2010 Apr 15;50(3):1085-98. doi: 10.1016/j.neuroimage.2009.12.106. Epub 2010 Jan 4.

Abstract

We present a method for discovering patterns of selectivity in fMRI data for experiments with multiple stimuli/tasks. We introduce a representation of the data as profiles of selectivity using linear regression estimates, and employ mixture model density estimation to identify functional systems with distinct types of selectivity. The method characterizes these systems by their selectivity patterns and spatial maps, both estimated simultaneously via the EM algorithm. We demonstrate a corresponding method for group analysis that avoids the need for spatial correspondence among subjects. Consistency of the selectivity profiles across subjects provides a way to assess the validity of the discovered systems. We validate this model in the context of category selectivity in visual cortex, demonstrating good agreement with the findings based on prior hypothesis-driven methods.

摘要

我们提出了一种在 fMRI 数据中发现多刺激/任务实验选择性模式的方法。我们使用线性回归估计将数据表示为选择性的剖面,并采用混合模型密度估计来识别具有不同选择性类型的功能系统。该方法通过 EM 算法同时估计选择性模式和空间图来对这些系统进行特征描述。我们还展示了一种对应的组分析方法,该方法避免了对受试者间空间对应性的要求。选择性剖面在受试者间的一致性为评估所发现系统的有效性提供了一种方法。我们在视觉皮层的类别选择性背景下验证了该模型,结果与基于先前假设驱动方法的发现有很好的一致性。

相似文献

1
Discovering structure in the space of fMRI selectivity profiles.
Neuroimage. 2010 Apr 15;50(3):1085-98. doi: 10.1016/j.neuroimage.2009.12.106. Epub 2010 Jan 4.
2
Discovering structure in the space of activation profiles in fMRI.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):1016-24. doi: 10.1007/978-3-540-85988-8_121.
3
Search for patterns of functional specificity in the brain: a nonparametric hierarchical Bayesian model for group fMRI data.
Neuroimage. 2012 Jan 16;59(2):1348-68. doi: 10.1016/j.neuroimage.2011.08.031. Epub 2011 Aug 22.
4
Multiple scales of organization for object selectivity in ventral visual cortex.
Neuroimage. 2011 Jun 1;56(3):1372-81. doi: 10.1016/j.neuroimage.2011.02.079. Epub 2011 Mar 3.
5
Source density-driven independent component analysis approach for fMRI data.
Hum Brain Mapp. 2005 Jul;25(3):297-307. doi: 10.1002/hbm.20100.
6
Performance of blind source separation algorithms for fMRI analysis using a group ICA method.
Magn Reson Imaging. 2007 Jun;25(5):684-94. doi: 10.1016/j.mri.2006.10.017. Epub 2006 Dec 8.
7
A method for real-time visual stimulus selection in the study of cortical object perception.
Neuroimage. 2016 Jun;133:529-548. doi: 10.1016/j.neuroimage.2016.02.071. Epub 2016 Mar 11.
9
A comparison of fMRI adaptation and multivariate pattern classification analysis in visual cortex.
Neuroimage. 2010 Jan 15;49(2):1632-40. doi: 10.1016/j.neuroimage.2009.09.066. Epub 2009 Oct 6.
10
Akaike causality in state space. Instantaneous causality between visual cortex in fMRI time series.
Biol Cybern. 2007 Aug;97(2):151-7. doi: 10.1007/s00422-007-0165-1. Epub 2007 Jun 20.

引用本文的文献

1
Homological landscape of human brain functional sub-circuits.
Mathematics (Basel). 2024 Feb;12(3). doi: 10.3390/math12030455. Epub 2024 Jan 31.
2
A hierarchical Bayesian brain parcellation framework for fusion of functional imaging datasets.
Imaging Neurosci (Camb). 2025 Jan 2;3. doi: 10.1162/imag_a_00408. eCollection 2025.
3
Distributed representations of behaviour-derived object dimensions in the human visual system.
Nat Hum Behav. 2024 Nov;8(11):2179-2193. doi: 10.1038/s41562-024-01980-y. Epub 2024 Sep 9.
4
Distributed representations of behavior-derived object dimensions in the human visual system.
bioRxiv. 2024 Jul 11:2023.08.23.553812. doi: 10.1101/2023.08.23.553812.
6
Fine-grained functional parcellation maps of the infant cerebral cortex.
Elife. 2023 Aug 1;12:e75401. doi: 10.7554/eLife.75401.
7
Semantic novelty modulates neural responses to visual change across the human brain.
Nat Commun. 2023 May 22;14(1):2910. doi: 10.1038/s41467-023-38576-5.
8
Frequency-specific brain network architecture in resting-state fMRI.
Sci Rep. 2023 Feb 20;13(1):2964. doi: 10.1038/s41598-023-29321-5.
9
Functional Connectivity of the Brain Across Rodents and Humans.
Front Neurosci. 2022 Mar 8;16:816331. doi: 10.3389/fnins.2022.816331. eCollection 2022.

本文引用的文献

1
Face-specific processing in the human fusiform gyrus.
J Cogn Neurosci. 1997 Fall;9(5):605-10. doi: 10.1162/jocn.1997.9.5.605.
2
Matching categorical object representations in inferior temporal cortex of man and monkey.
Neuron. 2008 Dec 26;60(6):1126-41. doi: 10.1016/j.neuron.2008.10.043.
3
Interpreting fMRI data: maps, modules and dimensions.
Nat Rev Neurosci. 2008 Feb;9(2):123-35. doi: 10.1038/nrn2314.
4
Detection of spatial activation patterns as unsupervised segmentation of fMRI data.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):110-8. doi: 10.1007/978-3-540-75757-3_14.
5
Structural analysis of fMRI data revisited: improving the sensitivity and reliability of fMRI group studies.
IEEE Trans Med Imaging. 2007 Sep;26(9):1256-69. doi: 10.1109/TMI.2007.903226.
6
The neural basis of visual body perception.
Nat Rev Neurosci. 2007 Aug;8(8):636-48. doi: 10.1038/nrn2195.
7
Visual word processing and experiential origins of functional selectivity in human extrastriate cortex.
Proc Natl Acad Sci U S A. 2007 May 22;104(21):9087-92. doi: 10.1073/pnas.0703300104. Epub 2007 May 14.
8
Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses.
Neuroimage. 2007 Mar;35(1):105-20. doi: 10.1016/j.neuroimage.2006.11.054. Epub 2007 Jan 18.
9
The fusiform face area: a cortical region specialized for the perception of faces.
Philos Trans R Soc Lond B Biol Sci. 2006 Dec 29;361(1476):2109-28. doi: 10.1098/rstb.2006.1934.
10
Domain specificity in visual cortex.
Cereb Cortex. 2006 Oct;16(10):1453-61. doi: 10.1093/cercor/bhj086. Epub 2005 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验