Suppr超能文献

基于高斯过程的白质束配准与总体分析。

White matter bundle registration and population analysis based on Gaussian processes.

作者信息

Wassermann Demian, Rathi Yogesh, Bouix Sylvain, Kubicki Marek, Kikinis Ron, Shenton Martha, Westin Carl-Fredrik

机构信息

Laboratory of Mathematics in Imaging, Brigham & Women's Hospital, Boston, MA, USA.

出版信息

Inf Process Med Imaging. 2011;22:320-32. doi: 10.1007/978-3-642-22092-0_27.

Abstract

This paper proposes a method for the registration of white matter tract bundles traced from diffusion images and its extension to atlas generation, Our framework is based on a Gaussian process representation of tract density maps. Such a representation avoids the need for point-to-point correspondences, is robust to tract interruptions and reconnections and seamlessly handles the comparison and combination of white matter tract bundles. Moreover, being a parametric model, this approach has the potential to be defined in the Gaussian processes' parameter space, without the need for resampling the fiber bundles during the registration process. We use the similarity measure of our Gaussian process framework, which is in fact an inner product, to drive a diffeomorphic registration algorithm between two sets of homologous bundles which is not biased by point-to-point correspondences or the parametrization of the tracts. We estimate a dense deformation of the underlying white matter using the bundles as anatomical landmarks and obtain a population atlas of those fiber bundles. Finally we test our results in several different bundles obtained from in-vivo data.

摘要

本文提出了一种用于对从扩散图像追踪得到的白质纤维束进行配准的方法及其在图谱生成方面的扩展。我们的框架基于纤维束密度图的高斯过程表示。这种表示避免了点对点对应关系的需求,对纤维束的中断和重新连接具有鲁棒性,并且能够无缝处理白质纤维束的比较和组合。此外,作为一种参数模型,该方法有潜力在高斯过程的参数空间中进行定义,而无需在配准过程中对纤维束进行重新采样。我们使用高斯过程框架的相似性度量(实际上是一种内积)来驱动两组同源纤维束之间的微分同胚配准算法,该算法不受点对点对应关系或纤维束参数化的影响。我们将纤维束用作解剖学标志来估计潜在白质的密集变形,并获得这些纤维束的群体图谱。最后,我们在从体内数据获得的几个不同纤维束中测试了我们的结果。

相似文献

1
White matter bundle registration and population analysis based on Gaussian processes.
Inf Process Med Imaging. 2011;22:320-32. doi: 10.1007/978-3-642-22092-0_27.
2
A statistical model of white matter fiber bundles based on currents.
Inf Process Med Imaging. 2009;21:114-25. doi: 10.1007/978-3-642-02498-6_10.
3
Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents.
Neuroimage. 2011 Apr 1;55(3):1073-90. doi: 10.1016/j.neuroimage.2010.11.056. Epub 2010 Nov 29.
4
Diffusion-based population statistics using tract probability maps.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):631-9. doi: 10.1007/978-3-642-15705-9_77.
5
Characterization of anatomic fiber bundles for diffusion tensor image analysis.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):903-10. doi: 10.1007/978-3-642-04268-3_111.
6
Unbiased groupwise registration of white matter tractography.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):123-30. doi: 10.1007/978-3-642-33454-2_16.
7
Nonlinear registration of diffusion MR images based on fiber bundles.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):351-8. doi: 10.1007/978-3-540-75757-3_43.
8
Joint Morphometry of Fiber Tracts and Gray Matter Structures Using Double Diffeomorphisms.
Inf Process Med Imaging. 2015;24:275-87. doi: 10.1007/978-3-319-19992-4_21.
9
Discovering dense and consistent landmarks in the brain.
Inf Process Med Imaging. 2011;22:97-110. doi: 10.1007/978-3-642-22092-0_9.
10
Registration and analysis of white matter group differences with a multi-fiber model.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):313-20. doi: 10.1007/978-3-642-33454-2_39.

引用本文的文献

1
White matter microstructural alterations and brain metabolism distributions in Parkinson's disease.
Brain Imaging Behav. 2025 Aug;19(4):938-948. doi: 10.1007/s11682-025-01023-8. Epub 2025 Jun 3.
2
White matter microstructure damage measured by automated fiber quantification correlates with pain symptoms in lung cancer patients.
Brain Imaging Behav. 2024 Dec;18(6):1524-1535. doi: 10.1007/s11682-024-00942-2. Epub 2024 Oct 2.
3
Abnormal white matter along fibers by automated fiber quantification in patients undergoing hemodialysis.
Neurol Sci. 2023 Dec;44(12):4499-4509. doi: 10.1007/s10072-023-06912-8. Epub 2023 Jul 1.
8
Decomposing the role of alpha oscillations during brain maturation.
Elife. 2022 Aug 25;11:e77571. doi: 10.7554/eLife.77571.
9
A large-scale investigation of white matter microstructural associations with reading ability.
Neuroimage. 2022 Apr 1;249:118909. doi: 10.1016/j.neuroimage.2022.118909. Epub 2022 Jan 14.
10
Deep Diffusion MRI Registration (DDMReg): A Deep Learning Method for Diffusion MRI Registration.
IEEE Trans Med Imaging. 2022 Jun;41(6):1454-1467. doi: 10.1109/TMI.2021.3139507. Epub 2022 Jun 1.

本文引用的文献

1
Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents.
Neuroimage. 2011 Apr 1;55(3):1073-90. doi: 10.1016/j.neuroimage.2010.11.056. Epub 2010 Nov 29.
3
A filtered approach to neural tractography using the Watson directional function.
Med Image Anal. 2010 Feb;14(1):58-69. doi: 10.1016/j.media.2009.10.003. Epub 2009 Oct 24.
4
Group analysis of DTI fiber tract statistics with application to neurodevelopment.
Neuroimage. 2009 Mar;45(1 Suppl):S133-42. doi: 10.1016/j.neuroimage.2008.10.060. Epub 2008 Nov 14.
5
Diffeomorphic demons: efficient non-parametric image registration.
Neuroimage. 2009 Mar;45(1 Suppl):S61-72. doi: 10.1016/j.neuroimage.2008.10.040. Epub 2008 Nov 7.
6
Diffusion tensor image registration using tensor geometry and orientation features.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):905-13. doi: 10.1007/978-3-540-85990-1_109.
7
A review of geometric transformations for nonrigid body registration.
IEEE Trans Med Imaging. 2008 Jan;27(1):111-28. doi: 10.1109/TMI.2007.904691.
8
Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification.
Neuroimage. 2008 Jan 1;39(1):336-47. doi: 10.1016/j.neuroimage.2007.07.053. Epub 2007 Aug 15.
9
Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis.
Med Image Anal. 2006 Oct;10(5):786-98. doi: 10.1016/j.media.2006.07.003. Epub 2006 Aug 22.
10
Deformable registration of diffusion tensor MR images with explicit orientation optimization.
Med Image Anal. 2006 Oct;10(5):764-85. doi: 10.1016/j.media.2006.06.004. Epub 2006 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验