Suppr超能文献

基于高斯过程的白质束配准与总体分析。

White matter bundle registration and population analysis based on Gaussian processes.

作者信息

Wassermann Demian, Rathi Yogesh, Bouix Sylvain, Kubicki Marek, Kikinis Ron, Shenton Martha, Westin Carl-Fredrik

机构信息

Laboratory of Mathematics in Imaging, Brigham & Women's Hospital, Boston, MA, USA.

出版信息

Inf Process Med Imaging. 2011;22:320-32. doi: 10.1007/978-3-642-22092-0_27.

Abstract

This paper proposes a method for the registration of white matter tract bundles traced from diffusion images and its extension to atlas generation, Our framework is based on a Gaussian process representation of tract density maps. Such a representation avoids the need for point-to-point correspondences, is robust to tract interruptions and reconnections and seamlessly handles the comparison and combination of white matter tract bundles. Moreover, being a parametric model, this approach has the potential to be defined in the Gaussian processes' parameter space, without the need for resampling the fiber bundles during the registration process. We use the similarity measure of our Gaussian process framework, which is in fact an inner product, to drive a diffeomorphic registration algorithm between two sets of homologous bundles which is not biased by point-to-point correspondences or the parametrization of the tracts. We estimate a dense deformation of the underlying white matter using the bundles as anatomical landmarks and obtain a population atlas of those fiber bundles. Finally we test our results in several different bundles obtained from in-vivo data.

摘要

本文提出了一种用于对从扩散图像追踪得到的白质纤维束进行配准的方法及其在图谱生成方面的扩展。我们的框架基于纤维束密度图的高斯过程表示。这种表示避免了点对点对应关系的需求,对纤维束的中断和重新连接具有鲁棒性,并且能够无缝处理白质纤维束的比较和组合。此外,作为一种参数模型,该方法有潜力在高斯过程的参数空间中进行定义,而无需在配准过程中对纤维束进行重新采样。我们使用高斯过程框架的相似性度量(实际上是一种内积)来驱动两组同源纤维束之间的微分同胚配准算法,该算法不受点对点对应关系或纤维束参数化的影响。我们将纤维束用作解剖学标志来估计潜在白质的密集变形,并获得这些纤维束的群体图谱。最后,我们在从体内数据获得的几个不同纤维束中测试了我们的结果。

相似文献

2
4
Diffusion-based population statistics using tract probability maps.使用束概率图的基于扩散的群体统计
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):631-9. doi: 10.1007/978-3-642-15705-9_77.
5
Characterization of anatomic fiber bundles for diffusion tensor image analysis.用于扩散张量图像分析的解剖纤维束特征描述
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):903-10. doi: 10.1007/978-3-642-04268-3_111.
6
Unbiased groupwise registration of white matter tractography.白质纤维束成像的无偏组内配准
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):123-30. doi: 10.1007/978-3-642-33454-2_16.
7
Nonlinear registration of diffusion MR images based on fiber bundles.基于纤维束的扩散磁共振图像非线性配准
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):351-8. doi: 10.1007/978-3-540-75757-3_43.
9
Discovering dense and consistent landmarks in the brain.在大脑中发现密集且一致的地标。
Inf Process Med Imaging. 2011;22:97-110. doi: 10.1007/978-3-642-22092-0_9.

引用本文的文献

本文引用的文献

5
Diffeomorphic demons: efficient non-parametric image registration.微分同胚恶魔算法:高效的非参数图像配准
Neuroimage. 2009 Mar;45(1 Suppl):S61-72. doi: 10.1016/j.neuroimage.2008.10.040. Epub 2008 Nov 7.
6
Diffusion tensor image registration using tensor geometry and orientation features.使用张量几何和方向特征的扩散张量图像配准
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):905-13. doi: 10.1007/978-3-540-85990-1_109.
7
A review of geometric transformations for nonrigid body registration.非刚体配准的几何变换综述。
IEEE Trans Med Imaging. 2008 Jan;27(1):111-28. doi: 10.1109/TMI.2007.904691.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验