Suppr超能文献

使用多纤维模型对白质组差异进行配准和分析。

Registration and analysis of white matter group differences with a multi-fiber model.

作者信息

Taquet Maxime, Scherrer Benoit, Commowick Olivier, Peters Jurriaan, Sahin Mustafa, Macq Benoît, Warfield Simon K

机构信息

Computational Radiology Laboratory, Children's Hospital Boston, Harvard, USA.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 3):313-20. doi: 10.1007/978-3-642-33454-2_39.

Abstract

Diffusion magnetic resonance imaging has been used extensively to probe the white matter in vivo. Typically, the raw diffusion images are used to reconstruct a diffusion tensor image (DTI). The incapacity of DTI to represent crossing fibers leaded to the development of more sophisticated diffusion models. Among them, multi-fiber models represent each fiber bundle independently, allowing the direct extraction of diffusion features for population analysis. However, no method exists to properly register multi-fiber models, seriously limiting their use in group comparisons. This paper presents a registration and atlas construction method for multi-fiber models. The validity of the registration is demonstrated on a dataset of 45 subjects, including both healthy and unhealthy subjects. Morphometry analysis and tract-based statistics are then carried out, proving that multi-fiber models registration is better at detecting white matter local differences than single tensor registration.

摘要

扩散磁共振成像已被广泛用于在体探测白质。通常,原始扩散图像用于重建扩散张量图像(DTI)。DTI无法表示交叉纤维,这促使了更复杂的扩散模型的发展。其中,多纤维模型独立表示每个纤维束,允许直接提取扩散特征以进行群体分析。然而,目前不存在适当注册多纤维模型的方法,这严重限制了它们在组间比较中的应用。本文提出了一种多纤维模型的配准和图谱构建方法。在一个包含45名受试者(包括健康和不健康受试者)的数据集上验证了配准的有效性。然后进行形态计量学分析和基于束的统计,证明多纤维模型配准在检测白质局部差异方面比单张量配准更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5817/3671390/4aceb2bf8a8c/nihms-477178-f0001.jpg

相似文献

2
DTI registration in atlas based fiber analysis of infantile Krabbe disease.基于图谱的婴儿型 Krabbe 病纤维分析中的 DTI 配准。
Neuroimage. 2011 Apr 15;55(4):1577-86. doi: 10.1016/j.neuroimage.2011.01.038. Epub 2011 Jan 19.
3
Automatic deformable diffusion tensor registration for fiber population analysis.用于纤维群体分析的自动可变形扩散张量配准
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):1014-22. doi: 10.1007/978-3-540-85990-1_122.
4
Unbiased groupwise registration of white matter tractography.白质纤维束成像的无偏组内配准
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):123-30. doi: 10.1007/978-3-642-33454-2_16.
5
Belief propagation based segmentation of white matter tracts in DTI.基于信念传播的扩散张量成像中白质纤维束分割
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):943-50. doi: 10.1007/978-3-642-04268-3_116.
7
Characterization of anatomic fiber bundles for diffusion tensor image analysis.用于扩散张量图像分析的解剖纤维束特征描述
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):903-10. doi: 10.1007/978-3-642-04268-3_111.
10

引用本文的文献

2

本文引用的文献

1
SPHERE: SPherical Harmonic Elastic REgistration of HARDI data.SPHERE:基于 SPherical Harmonic 的弥散张量 HARDI 数据配准。
Neuroimage. 2011 Mar 15;55(2):545-56. doi: 10.1016/j.neuroimage.2010.12.015. Epub 2010 Dec 13.
3
DT-REFinD: diffusion tensor registration with exact finite-strain differential.DT-REFinD:基于精确有限应变微分的扩散张量配准。
IEEE Trans Med Imaging. 2009 Dec;28(12):1914-28. doi: 10.1109/TMI.2009.2025654. Epub 2009 Jun 23.
7
Nonrigid registration of 3D tensor medical data.三维张量医学数据的非刚性配准
Med Image Anal. 2002 Jun;6(2):143-61. doi: 10.1016/s1361-8415(02)00055-5.
8
Identifying global anatomical differences: deformation-based morphometry.识别全球解剖学差异:基于变形的形态测量学。
Hum Brain Mapp. 1998;6(5-6):348-57. doi: 10.1002/(SICI)1097-0193(1998)6:5/6<348::AID-HBM4>3.0.CO;2-P.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验