Suppr超能文献

无监督白质纤维聚类和束概率图生成:高斯过程框架在白质纤维中的应用。

Unsupervised white matter fiber clustering and tract probability map generation: applications of a Gaussian process framework for white matter fibers.

机构信息

INRIA Sophia Antipolis-Mediterranée, Odyssée Project Team, 2004 Route des Lucioles, Sophia Antipolis, 06902, France.

出版信息

Neuroimage. 2010 May 15;51(1):228-41. doi: 10.1016/j.neuroimage.2010.01.004. Epub 2010 Jan 14.

Abstract

With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This article presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product between fibres. Such inner product operation, based on Gaussian processes, spans a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor an a priori knowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects, thereby avoiding the need for point parameterization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21-subject dataset.

摘要

随着纤维追踪在扩散张量图像中的重要性不断增加,对于一种客观的数学框架来对包含其潜在物理意义的白质纤维束进行定量分析的需求也在不断增长。本文提出了这样一种新的数学框架,该框架使用纤维之间的内积来促进束之间的数学运算。这种基于高斯过程的内积运算跨越了度量空间。该度量有助于纤维束的组合,使得像束的成员关系或束的相似性这样的操作变得简单。基于这个框架,我们设计了一种自动化的、无需人工初始化也无需先验知识的基于图谱的聚类方法。现在可以对跨受试者的聚类束体积进行定量分析,从而避免了对这些纤维进行点参数化的需要,或者像以前的工作中那样使用中轴或包络表示。合成数据的实验证明了数学运算的有效性。随后,该无监督聚类框架在一个 21 个受试者数据集上的适用性得到了验证。

相似文献

2
A hybrid approach to automatic clustering of white matter fibers.一种自动对白质纤维进行聚类的混合方法。
Neuroimage. 2010 Jan 15;49(2):1249-58. doi: 10.1016/j.neuroimage.2009.08.017. Epub 2009 Aug 13.
4
Automated tract extraction via atlas based Adaptive Clustering.通过基于图谱的自适应聚类进行自动纤维束提取。
Neuroimage. 2014 Nov 15;102 Pt 2(0 2):596-607. doi: 10.1016/j.neuroimage.2014.08.021. Epub 2014 Aug 15.
7
Automated atlas-based clustering of white matter fiber tracts from DTMRI.基于图谱自动聚类DTMRI白质纤维束
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):188-95. doi: 10.1007/11566465_24.
9
Combinatorial fiber-tracking of the human brain.人类大脑的组合式纤维追踪
Neuroimage. 2009 Nov 15;48(3):532-40. doi: 10.1016/j.neuroimage.2009.05.086. Epub 2009 Jun 6.

引用本文的文献

1
Diffusion MRI with Machine Learning.结合机器学习的扩散磁共振成像
Imaging Neurosci (Camb). 2024;2. doi: 10.1162/imag_a_00353. Epub 2024 Nov 12.
2
A detailed spatiotemporal atlas of the white matter tracts for the fetal brain.胎儿脑白质束的详细时空图谱。
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2410341121. doi: 10.1073/pnas.2410341121. Epub 2024 Dec 30.
7
Brainstem Diffusion Tensor Tractography and Clinical Applications in Pain.脑干扩散张量纤维束成像及其在疼痛中的临床应用
Front Pain Res (Lausanne). 2022 Mar 24;3:840328. doi: 10.3389/fpain.2022.840328. eCollection 2022.
10
Tract Dictionary Learning for Fast and Robust Recognition of Fiber Bundles.用于快速稳健识别纤维束的轨迹字典学习
Med Image Comput Comput Assist Interv. 2020 Oct;12267:251-259. doi: 10.1007/978-3-030-59728-3_25. Epub 2020 Sep 29.

本文引用的文献

3
Mathematical methods for diffusion MRI processing.扩散磁共振成像处理的数学方法。
Neuroimage. 2009 Mar;45(1 Suppl):S111-22. doi: 10.1016/j.neuroimage.2008.10.054. Epub 2008 Nov 13.
5
Diffusion tensor image registration using tensor geometry and orientation features.使用张量几何和方向特征的扩散张量图像配准
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):905-13. doi: 10.1007/978-3-540-85990-1_109.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验