INRIA Sophia Antipolis-Mediterranée, Odyssée Project Team, 2004 Route des Lucioles, Sophia Antipolis, 06902, France.
Neuroimage. 2010 May 15;51(1):228-41. doi: 10.1016/j.neuroimage.2010.01.004. Epub 2010 Jan 14.
With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This article presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product between fibres. Such inner product operation, based on Gaussian processes, spans a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor an a priori knowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects, thereby avoiding the need for point parameterization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21-subject dataset.
随着纤维追踪在扩散张量图像中的重要性不断增加,对于一种客观的数学框架来对包含其潜在物理意义的白质纤维束进行定量分析的需求也在不断增长。本文提出了这样一种新的数学框架,该框架使用纤维之间的内积来促进束之间的数学运算。这种基于高斯过程的内积运算跨越了度量空间。该度量有助于纤维束的组合,使得像束的成员关系或束的相似性这样的操作变得简单。基于这个框架,我们设计了一种自动化的、无需人工初始化也无需先验知识的基于图谱的聚类方法。现在可以对跨受试者的聚类束体积进行定量分析,从而避免了对这些纤维进行点参数化的需要,或者像以前的工作中那样使用中轴或包络表示。合成数据的实验证明了数学运算的有效性。随后,该无监督聚类框架在一个 21 个受试者数据集上的适用性得到了验证。