Suppr超能文献

基于功能磁共振成像的心理过程状态空间模型。

State-space models of mental processes from fMRI.

作者信息

Janoos Firdaus, Singh Shantanu, Machiraju Raghu, Wells William M, Mórocz Istvan A

机构信息

Dept. of Computer Science, The Ohio State University, USA.

出版信息

Inf Process Med Imaging. 2011;22:588-99.

Abstract

In addition to functional localization and integration, the problem of determining whether the data encode some information about the mental state of the subject, and if so, how this information is represented has become an important research agenda in functional neuroimaging. Multivariate classifiers, commonly used for brain state decoding, are restricted to simple experimental paradigms with a fixed number of alternatives and are limited in their representation of the temporal dimension of the task. Moreover, they learn a mapping from the data to experimental conditions and therefore do not explain the intrinsic patterns in the data. In this paper, we present a data-driven approach to building a spatio-temporal representation of mental processes using a state-space formalism, without reference to experimental conditions. Efficient Monte Carlo algorithms for estimating the parameters of the model along with a method for model-size selection are developed. The advantages of such a model in determining the mental-state of the subject over pattern classifiers are demonstrated using an fMRI study of mental arithmetic.

摘要

除了功能定位和整合之外,确定数据是否编码了有关受试者心理状态的某些信息,如果是,这些信息是如何表示的,这一问题已成为功能神经成像领域的重要研究议程。常用于脑状态解码的多变量分类器仅限于具有固定数量备选方案的简单实验范式,并且在任务时间维度的表示方面存在局限性。此外,它们学习从数据到实验条件的映射,因此无法解释数据中的内在模式。在本文中,我们提出了一种数据驱动的方法,使用状态空间形式主义构建心理过程的时空表示,而无需参考实验条件。开发了用于估计模型参数的高效蒙特卡罗算法以及模型大小选择方法。通过一项心算功能磁共振成像研究,证明了这种模型在确定受试者心理状态方面相对于模式分类器的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc07/4011193/848da35be264/nihms-574321-f0001.jpg

相似文献

2
Spatio-temporal models of mental processes from fMRI.基于 fMRI 的心理过程时空模型。
Neuroimage. 2011 Jul 15;57(2):362-77. doi: 10.1016/j.neuroimage.2011.03.047. Epub 2011 Mar 24.
4
Unsupervised learning of brain states from fMRI data.基于功能磁共振成像(fMRI)数据的脑状态无监督学习。
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):201-8. doi: 10.1007/978-3-642-15745-5_25.
6
Task-specific functional brain geometry from model maps.来自模型图谱的特定任务功能性脑几何学
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):925-33. doi: 10.1007/978-3-540-85988-8_110.
9
Model-independent method for fMRI analysis.功能磁共振成像分析的非模型依赖方法。
IEEE Trans Med Imaging. 2004 Mar;23(3):285-96. doi: 10.1109/TMI.2003.823064.

本文引用的文献

1
Analyzing effective connectivity with functional magnetic resonance imaging.利用功能磁共振成像分析有效连接性。
Wiley Interdiscip Rev Cogn Sci. 2010 May;1(3):446-459. doi: 10.1002/wcs.58. Epub 2010 Apr 2.
2
Multi-level bootstrap analysis of stable clusters in resting-state fMRI.静息态 fMRI 中稳定聚类的多级自举分析。
Neuroimage. 2010 Jul 1;51(3):1126-39. doi: 10.1016/j.neuroimage.2010.02.082. Epub 2010 Mar 10.
7
Bayesian decoding of brain images.脑图像的贝叶斯解码
Neuroimage. 2008 Jan 1;39(1):181-205. doi: 10.1016/j.neuroimage.2007.08.013. Epub 2007 Aug 24.
8
Dynamic discrimination analysis: a spatial-temporal SVM.动态判别分析:一种时空支持向量机。
Neuroimage. 2007 May 15;36(1):88-99. doi: 10.1016/j.neuroimage.2007.02.020. Epub 2007 Feb 23.
9
Timing of human cortical functions during cognition: role of MEG.
Trends Cogn Sci. 2000 Dec 1;4(12):455-462. doi: 10.1016/s1364-6613(00)01549-7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验