Janoos Firdaus, Singh Shantanu, Machiraju Raghu, Wells William M, Mórocz Istvan A
Dept. of Computer Science, The Ohio State University, USA.
Inf Process Med Imaging. 2011;22:588-99.
In addition to functional localization and integration, the problem of determining whether the data encode some information about the mental state of the subject, and if so, how this information is represented has become an important research agenda in functional neuroimaging. Multivariate classifiers, commonly used for brain state decoding, are restricted to simple experimental paradigms with a fixed number of alternatives and are limited in their representation of the temporal dimension of the task. Moreover, they learn a mapping from the data to experimental conditions and therefore do not explain the intrinsic patterns in the data. In this paper, we present a data-driven approach to building a spatio-temporal representation of mental processes using a state-space formalism, without reference to experimental conditions. Efficient Monte Carlo algorithms for estimating the parameters of the model along with a method for model-size selection are developed. The advantages of such a model in determining the mental-state of the subject over pattern classifiers are demonstrated using an fMRI study of mental arithmetic.
除了功能定位和整合之外,确定数据是否编码了有关受试者心理状态的某些信息,如果是,这些信息是如何表示的,这一问题已成为功能神经成像领域的重要研究议程。常用于脑状态解码的多变量分类器仅限于具有固定数量备选方案的简单实验范式,并且在任务时间维度的表示方面存在局限性。此外,它们学习从数据到实验条件的映射,因此无法解释数据中的内在模式。在本文中,我们提出了一种数据驱动的方法,使用状态空间形式主义构建心理过程的时空表示,而无需参考实验条件。开发了用于估计模型参数的高效蒙特卡罗算法以及模型大小选择方法。通过一项心算功能磁共振成像研究,证明了这种模型在确定受试者心理状态方面相对于模式分类器的优势。