Suppr超能文献

静电极化在重现 Cu(I)相互作用能和水合作用中至关重要。

Electrostatic polarization is crucial in reproducing Cu(I) interaction energies and hydration.

机构信息

Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.

出版信息

J Phys Chem B. 2011 Aug 25;115(33):10079-85. doi: 10.1021/jp2051933. Epub 2011 Jul 28.

Abstract

We have explored the suitability of fixed-charges and polarizable force fields for modeling interactions of the monovalent Cu(I) ion. Parameters for this ion have been tested and refitted within the fixed-charges OPLS-AA and polarizable force field (PFF) frameworks. While this ion plays an important role in many protein interactions, the attention to it in developing empirical force fields is limited. Our PFF parameters for the copper ion worked very well for the Cu(I) interactions with water, while both the original OPLS2005 and our refitted OPLS versions moderately underestimated the copper-water interaction energy. However, the greatest problem in using the nonpolarizable fixed-charges OPLS force field was observed while calculating interaction energies and distances for Cu(I)-benzene complexes. The OPLS2005 model underestimates the interaction energy by a factor of 4. Refitting the OPLS parameters reduced this underestimation to a factor of 2.2-2.4, but only at a cost of distorting the complex geometry. At the same time, the polarizable calculations had an error of about 4%. Moreover, we then used the PFF and nonpolarizable refitted OPLS models for finding free energy of hydration for copper ion via molecular dynamics simulations. While the OPLS calculations lead to a 22% error in the solvation energy, the PFF result was off by only 1.8%. This was achieved with no refitting of the parameters but simply by employing the model developed for the Cu(I) interaction with a single water molecule. We believe that the presented results not only lead to a conclusion about a qualitatively greater suitability of polarizable force fields for simulating molecular interactions with ions but also attest to the excellent level of transferability of PFF parameters.

摘要

我们探索了定电荷和极化力场在模拟单价铜(I)离子相互作用中的适用性。已经在定电荷 OPLS-AA 和极化力场(PFF)框架内测试和重新拟合了该离子的参数。虽然该离子在许多蛋白质相互作用中起着重要作用,但在开发经验力场时对其的关注是有限的。我们的铜离子 PFF 参数非常适用于 Cu(I)与水的相互作用,而原始的 OPLS2005 和我们重新拟合的 OPLS 版本都适度低估了铜-水相互作用能。然而,在使用非极化定电荷 OPLS 力场计算 Cu(I)-苯络合物的相互作用能和距离时,观察到了最大的问题。OPLS2005 模型低估了相互作用能 4 倍。重新拟合 OPLS 参数将这种低估降低到 2.2-2.4 倍,但这是以扭曲络合物几何形状为代价的。与此同时,极化计算的误差约为 4%。此外,我们随后使用 PFF 和非极化重新拟合的 OPLS 模型通过分子动力学模拟来寻找铜离子的水合自由能。虽然 OPLS 计算导致溶剂化能的 22%误差,但 PFF 的结果仅偏离 1.8%。这是通过不重新拟合参数但仅采用为 Cu(I)与单个水分子相互作用而开发的模型来实现的。我们认为,所呈现的结果不仅导致了极化力场在模拟离子与分子相互作用方面具有更高的适用性的定性结论,而且还证明了 PFF 参数具有出色的可转移性水平。

相似文献

1
Electrostatic polarization is crucial in reproducing Cu(I) interaction energies and hydration.
J Phys Chem B. 2011 Aug 25;115(33):10079-85. doi: 10.1021/jp2051933. Epub 2011 Jul 28.
3
Polarizable Force Field for Molecular Ions Based on the Classical Drude Oscillator.
J Chem Inf Model. 2018 May 29;58(5):993-1004. doi: 10.1021/acs.jcim.8b00132. Epub 2018 Apr 17.
4
Prediction of hydration free energies for the SAMPL4 diverse set of compounds using molecular dynamics simulations with the OPLS-AA force field.
J Comput Aided Mol Des. 2014 Mar;28(3):265-76. doi: 10.1007/s10822-014-9727-1. Epub 2014 Feb 21.
6
Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations.
J Phys Chem B. 2008 Jul 31;112(30):9020-41. doi: 10.1021/jp8001614. Epub 2008 Jul 2.
7
Cooperativity and Frustration Effects (or Lack Thereof) in Polarizable and Non-polarizable Force Fields.
J Chem Theory Comput. 2023 Nov 14;19(21):7715-7730. doi: 10.1021/acs.jctc.3c00762. Epub 2023 Oct 27.
10
Reproducing basic pKa values for turkey ovomucoid third domain using a polarizable force field.
J Phys Chem B. 2009 Jun 4;113(22):7844-50. doi: 10.1021/jp809412e.

引用本文的文献

1
Metal Ion Modeling Using Classical Mechanics.
Chem Rev. 2017 Feb 8;117(3):1564-1686. doi: 10.1021/acs.chemrev.6b00440. Epub 2017 Jan 3.
2
Membrane Anchoring and Ion-Entry Dynamics in P-type ATPase Copper Transport.
Biophys J. 2016 Dec 6;111(11):2417-2429. doi: 10.1016/j.bpj.2016.10.020.
3
Developing multisite empirical force field models for Pt(II) and cisplatin.
J Comput Chem. 2017 Jan 30;38(3):161-168. doi: 10.1002/jcc.24665. Epub 2016 Nov 11.
5
Solution NMR refinement of a metal ion bound protein using metal ion inclusive restrained molecular dynamics methods.
J Biomol NMR. 2013 Jun;56(2):125-37. doi: 10.1007/s10858-013-9729-7. Epub 2013 Apr 23.

本文引用的文献

4
Structure of the two transmembrane Cu+ transport sites of the Cu+ -ATPases.
J Biol Chem. 2008 Oct 31;283(44):29753-9. doi: 10.1074/jbc.M803248200. Epub 2008 Sep 4.
5
Metal binding affinity and selectivity in metalloproteins: insights from computational studies.
Annu Rev Biophys. 2008;37:97-116. doi: 10.1146/annurev.biophys.37.032807.125811.
6
High Cu(I) and low proton affinities of the CXXC motif of Bacillus subtilis CopZ.
Biochem J. 2008 Aug 1;413(3):459-65. doi: 10.1042/BJ20080467.
7
Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus.
J Mol Biol. 2008 May 2;378(3):581-95. doi: 10.1016/j.jmb.2008.01.094. Epub 2008 Feb 12.
8
Electrostatic polarization is crucial for reproducing pKa shifts of carboxylic residues in Turkey ovomucoid third domain.
J Phys Chem B. 2007 Aug 2;111(30):9036-44. doi: 10.1021/jp071284d. Epub 2007 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验