Suppr超能文献

纤维方向和心外膜激活的不确定性量化

Uncertainty Quantification of Fiber Orientation and Epicardial Activation.

作者信息

Rupp Lindsay C, Busatto Anna, Bergquist Jake A, Gillette Karli, Narayan Akil, Plank Gernot, MacLeod Rob S

机构信息

Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA.

Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA.

出版信息

Comput Cardiol (2010). 2023 Oct;50. doi: 10.22489/cinc.2023.137. Epub 2023 Dec 26.

Abstract

Predictive models and simulations of cardiac function require accurate representations of anatomy, often to the scale of local myocardial fiber structure. However, acquiring this information in a patient-specific manner is challenging. Moreover, the impact of physiological variability in fiber orientation on simulations of cardiac activation is poorly understood. To explore these effects, we implemented bi-ventricular activation simulations using rule-based fiber algorithms and robust uncertainty quantification techniques to generate detailed maps of model variability. Specifically, we utilized polynomial chaos expansion, enabling efficient exploration with reduced computational demand through an emulator function approximating the underlying forward model. Our study focused on examining the epicardial activation sequences of the heart in response to six stimuli locations and five metrics of activation. Our findings revealed that physiological variability in fiber orientation does not significantly affect the location of activation features, but it does impact the overall spread of activation. We observed low variability near the earliest activation sites, but high variability across the rest of the epicardial surface. We conclude that the level of accuracy of myocardial fiber orientation required for simulation depends on the specific goals of the model and the related research or clinical goals.

摘要

心脏功能的预测模型和模拟需要精确的解剖结构表示,通常要达到局部心肌纤维结构的尺度。然而,以患者特异性的方式获取这些信息具有挑战性。此外,纤维方向的生理变异性对心脏激活模拟的影响尚不清楚。为了探究这些影响,我们使用基于规则的纤维算法和强大的不确定性量化技术进行双心室激活模拟,以生成详细的模型变异性图谱。具体而言,我们利用多项式混沌展开,通过近似基础正向模型的模拟器函数,以减少计算需求来实现高效探索。我们的研究重点是检查心脏在六个刺激位置和五个激活指标下的心外膜激活序列。我们的研究结果表明,纤维方向的生理变异性不会显著影响激活特征的位置,但会影响激活的整体传播。我们观察到最早激活部位附近的变异性较低,但心外膜表面其他部位的变异性较高。我们得出结论,模拟所需的心肌纤维方向的准确程度取决于模型的具体目标以及相关的研究或临床目标。

相似文献

6
Using UncertainSCI to Quantify Uncertainty in Cardiac Simulations.使用UncertainSCI量化心脏模拟中的不确定性。
Comput Cardiol (2010). 2020 Sep;47. doi: 10.22489/cinc.2020.275. Epub 2021 Feb 10.

本文引用的文献

4
Computational models in cardiology.心脏病学中的计算模型。
Nat Rev Cardiol. 2019 Feb;16(2):100-111. doi: 10.1038/s41569-018-0104-y.
9
Human atlas of the cardiac fiber architecture: study on a healthy population.人类心脏纤维结构图谱:健康人群研究。
IEEE Trans Med Imaging. 2012 Jul;31(7):1436-47. doi: 10.1109/TMI.2012.2192743. Epub 2012 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验