Suppr超能文献

使用恢复曲线模拟器对电生理模型进行贝叶斯校准。

Bayesian Calibration of Electrophysiology Models Using Restitution Curve Emulators.

作者信息

Coveney Sam, Corrado Cesare, Oakley Jeremy E, Wilkinson Richard D, Niederer Steven A, Clayton Richard H

机构信息

Insigneo Institute for In-Silico Medicine and Department of Computer Science, University of Sheffield, Sheffield, United Kingdom.

Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.

出版信息

Front Physiol. 2021 Jul 22;12:693015. doi: 10.3389/fphys.2021.693015. eCollection 2021.

Abstract

Calibration of cardiac electrophysiology models is a fundamental aspect of model personalization for predicting the outcomes of cardiac therapies, simulation testing of device performance for a range of phenotypes, and for fundamental research into cardiac function. Restitution curves provide information on tissue function and can be measured using clinically feasible measurement protocols. We introduce novel "restitution curve emulators" as probabilistic models for performing model exploration, sensitivity analysis, and Bayesian calibration to noisy data. These emulators are built by decomposing restitution curves using principal component analysis and modeling the resulting coordinates with respect to model parameters using Gaussian processes. Restitution curve emulators can be used to study parameter identifiability via sensitivity analysis of restitution curve components and rapid inference of the posterior distribution of model parameters given noisy measurements. Posterior uncertainty about parameters is critical for making predictions from calibrated models, since many parameter settings can be consistent with measured data and yet produce very different model behaviors under conditions not effectively probed by the measurement protocols. Restitution curve emulators are therefore promising probabilistic tools for calibrating electrophysiology models.

摘要

心脏电生理模型的校准是模型个性化的一个基本方面,用于预测心脏治疗的结果、对一系列表型的设备性能进行模拟测试以及进行心脏功能的基础研究。恢复曲线提供了关于组织功能的信息,并且可以使用临床上可行的测量方案进行测量。我们引入了新颖的“恢复曲线模拟器”作为概率模型,用于执行模型探索、敏感性分析以及对噪声数据进行贝叶斯校准。这些模拟器通过使用主成分分析分解恢复曲线,并使用高斯过程对所得坐标相对于模型参数进行建模来构建。恢复曲线模拟器可用于通过恢复曲线成分的敏感性分析来研究参数可识别性,并在给定噪声测量的情况下快速推断模型参数的后验分布。参数的后验不确定性对于从校准模型进行预测至关重要,因为许多参数设置可能与测量数据一致,但在测量方案未有效探测的条件下会产生非常不同的模型行为。因此,恢复曲线模拟器是用于校准电生理模型的很有前景的概率工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e023/8339909/f6f131b68bee/fphys-12-693015-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验