School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, UK.
Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA.
J R Soc Interface. 2020 Dec;17(173):20200886. doi: 10.1098/rsif.2020.0886. Epub 2020 Dec 23.
This study uses Bayesian inference to quantify the uncertainty of model parameters and haemodynamic predictions in a one-dimensional pulmonary circulation model based on an integration of mouse haemodynamic and micro-computed tomography imaging data. We emphasize an often neglected, though important source of uncertainty: in the mathematical model form due to the discrepancy between the model and the reality, and in the measurements due to the wrong noise model (jointly called 'model mismatch'). We demonstrate that minimizing the mean squared error between the measured and the predicted data (the conventional method) in the presence of model mismatch leads to biased and overly confident parameter estimates and haemodynamic predictions. We show that our proposed method allowing for model mismatch, which we represent with Gaussian processes, corrects the bias. Additionally, we compare a linear and a nonlinear wall model, as well as models with different vessel stiffness relations. We use formal model selection analysis based on the Watanabe Akaike information criterion to select the model that best predicts the pulmonary haemodynamics. Results show that the nonlinear pressure-area relationship with stiffness dependent on the unstressed radius predicts best the data measured in a control mouse.
本研究采用贝叶斯推断,基于整合了小鼠血液动力学和微计算机断层扫描成像数据的一维肺循环模型,对模型参数和血液动力学预测的不确定性进行量化。我们强调了一个常被忽视但很重要的不确定性来源:模型和现实之间的差异导致的数学模型形式上的不确定性,以及由于错误的噪声模型导致的测量不确定性(统称为“模型失配”)。我们证明,在存在模型失配的情况下,通过最小化测量数据和预测数据之间的均方误差(传统方法),会导致参数估计和血液动力学预测出现偏差和过度自信。我们展示了我们提出的允许模型失配的方法,我们用高斯过程来表示,这种方法可以纠正偏差。此外,我们还比较了线性和非线性的壁面模型,以及具有不同血管刚度关系的模型。我们使用基于 Watanabe Akaike 信息准则的正式模型选择分析来选择最能预测肺血液动力学的模型。结果表明,在控制小鼠中,具有依赖于无应力半径的刚度的非线性压力-面积关系能最好地预测测量数据。