Suppr超能文献

使用个体特异性几何形状和空间变化的壁特性对可变形血管中的血流进行模拟。

Simulation of blood flow in deformable vessels using subject-specific geometry and spatially varying wall properties.

作者信息

Xiong Guanglei, Figueroa C Alberto, Xiao Nan, Taylor Charles A

出版信息

Int J Numer Method Biomed Eng. 2011 Jul;27(7):1000-1016. doi: 10.1002/cnm.1404.

Abstract

Simulation of blood flow using image-based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject-specific geometric models from medical imaging data have improved substantially in the last decade but for many problems, still require significant user interaction. In addition, while fluid-structure interaction methods are being employed to model blood flow and vessel wall dynamics, tissue properties are often assumed to be uniform. In this paper, we propose a novel workflow for simulating blood flow using subject-specific geometry and spatially varying wall properties. The geometric model construction is based on 3D segmentation and geometric processing. Variable wall properties are assigned to the model based on combining centerline-based and surface-based methods. We finally demonstrate these new methods using an idealized cylindrical model and two subject-specific vascular models with thoracic and cerebral aneurysms.

摘要

使用基于图像的模型和计算流体动力学对血流进行模拟,已在量化与心血管疾病的发生和发展相关的血流动力学因素以及规划干预措施方面得到广泛应用。在过去十年中,从医学成像数据创建特定于个体的几何模型的方法有了显著改进,但对于许多问题,仍然需要大量的用户交互。此外,虽然正在采用流固相互作用方法来模拟血流和血管壁动力学,但组织特性通常被假定为均匀的。在本文中,我们提出了一种新颖的工作流程,用于使用特定于个体的几何形状和空间变化的壁属性来模拟血流。几何模型构建基于三维分割和几何处理。基于中心线法和基于表面法的结合,将可变壁属性分配给模型。我们最终使用理想化的圆柱形模型以及两个患有胸主动脉瘤和脑动脉瘤的特定于个体的血管模型来演示这些新方法。

相似文献

1
Simulation of blood flow in deformable vessels using subject-specific geometry and spatially varying wall properties.
Int J Numer Method Biomed Eng. 2011 Jul;27(7):1000-1016. doi: 10.1002/cnm.1404.
3
Virtual stent grafting in personalized surgical planning for treatment of aortic aneurysms using image-based computational fluid dynamics.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):375-82. doi: 10.1007/978-3-642-15711-0_47.
6
Hemodynamic simulation of abdominal aortic aneurysm on idealised models: Investigation of stress parameters during disease progression.
Comput Methods Programs Biomed. 2022 Jan;213:106508. doi: 10.1016/j.cmpb.2021.106508. Epub 2021 Nov 1.
8
Reconstruction of blood propagation in three-dimensional rotational X-ray angiography (3D-RA).
Comput Med Imaging Graph. 2005 Oct;29(7):507-20. doi: 10.1016/j.compmedimag.2005.03.006. Epub 2005 Sep 2.
10
Modeling and Visual Simulation of Bifurcation Aneurysms Using Smoothed Particle Hydrodynamics and Murray's Law.
Bioengineering (Basel). 2024 Nov 27;11(12):1200. doi: 10.3390/bioengineering11121200.

引用本文的文献

1
Uncertainty quantification of the impact of peripheral arterial disease on abdominal aortic aneurysms in blood flow simulations.
J R Soc Interface. 2024 Apr;21(213):20230656. doi: 10.1098/rsif.2023.0656. Epub 2024 Apr 10.
2
Bio-inspired microfluidics: A review.
Biomicrofluidics. 2023 Sep 27;17(5):051503. doi: 10.1063/5.0161809. eCollection 2023 Sep.
3
The study on the impact of AAA wall motion on the hemodynamics based on 4D CT image data.
Front Bioeng Biotechnol. 2023 Mar 30;11:1103905. doi: 10.3389/fbioe.2023.1103905. eCollection 2023.
4
Beyond CFD: Emerging methodologies for predictive simulation in cardiovascular health and disease.
Biophys Rev (Melville). 2023 Mar;4(1):011301. doi: 10.1063/5.0109400. Epub 2023 Jan 13.
5
A Novel Computational Biomechanics Framework to Model Vascular Mechanopropagation in Deep Bone Marrow.
Adv Healthc Mater. 2023 Mar;12(8):e2201830. doi: 10.1002/adhm.202201830. Epub 2023 Jan 8.
6
An in silico validation framework for quantitative DCE-MRI techniques based on a dynamic digital phantom.
Med Image Anal. 2021 Oct;73:102186. doi: 10.1016/j.media.2021.102186. Epub 2021 Jul 20.
9
Functional assessment of thoracic aortic aneurysms - the future of risk prediction?
Br Med Bull. 2017 Jan 1;121(1):61-71. doi: 10.1093/bmb/ldw049.
10
Systems biology of the microvasculature.
Integr Biol (Camb). 2015 May;7(5):498-512. doi: 10.1039/c4ib00296b. Epub 2015 Apr 2.

本文引用的文献

1
Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow.
Comput Methods Appl Mech Eng. 2007 May 15;196(29-30):2943-2959. doi: 10.1016/j.cma.2007.02.009.
2
A Computational Framework for Fluid-Solid-Growth Modeling in Cardiovascular Simulations.
Comput Methods Appl Mech Eng. 2009 Sep 15;198(45-46):3583-3602. doi: 10.1016/j.cma.2008.09.013.
3
Patient-specific modeling of cardiovascular mechanics.
Annu Rev Biomed Eng. 2009;11:109-34. doi: 10.1146/annurev.bioeng.10.061807.160521.
4
Blood flow in a compliant vessel by the immersed boundary method.
Ann Biomed Eng. 2009 May;37(5):927-42. doi: 10.1007/s10439-009-9669-2. Epub 2009 Mar 13.
6
An image-based modeling framework for patient-specific computational hemodynamics.
Med Biol Eng Comput. 2008 Nov;46(11):1097-112. doi: 10.1007/s11517-008-0420-1. Epub 2008 Nov 11.
7
Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models.
Annu Rev Biomed Eng. 2008;10:221-46. doi: 10.1146/annurev.bioeng.10.061807.160439.
8
Multiscale vascular surface model generation from medical imaging data using hierarchical features.
IEEE Trans Med Imaging. 2008 Mar;27(3):331-41. doi: 10.1109/TMI.2007.905081.
9
Curve-skeleton properties, applications, and algorithms.
IEEE Trans Vis Comput Graph. 2007 May-Jun;13(3):530-548. doi: 10.1109/TVCG.2007.1002.
10
Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury.
J Vasc Surg. 2006 Dec;44(6):1254-1265. doi: 10.1016/j.jvs.2006.08.026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验