Xiong Guanglei, Figueroa C Alberto, Xiao Nan, Taylor Charles A
Int J Numer Method Biomed Eng. 2011 Jul;27(7):1000-1016. doi: 10.1002/cnm.1404.
Simulation of blood flow using image-based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject-specific geometric models from medical imaging data have improved substantially in the last decade but for many problems, still require significant user interaction. In addition, while fluid-structure interaction methods are being employed to model blood flow and vessel wall dynamics, tissue properties are often assumed to be uniform. In this paper, we propose a novel workflow for simulating blood flow using subject-specific geometry and spatially varying wall properties. The geometric model construction is based on 3D segmentation and geometric processing. Variable wall properties are assigned to the model based on combining centerline-based and surface-based methods. We finally demonstrate these new methods using an idealized cylindrical model and two subject-specific vascular models with thoracic and cerebral aneurysms.
使用基于图像的模型和计算流体动力学对血流进行模拟,已在量化与心血管疾病的发生和发展相关的血流动力学因素以及规划干预措施方面得到广泛应用。在过去十年中,从医学成像数据创建特定于个体的几何模型的方法有了显著改进,但对于许多问题,仍然需要大量的用户交互。此外,虽然正在采用流固相互作用方法来模拟血流和血管壁动力学,但组织特性通常被假定为均匀的。在本文中,我们提出了一种新颖的工作流程,用于使用特定于个体的几何形状和空间变化的壁属性来模拟血流。几何模型构建基于三维分割和几何处理。基于中心线法和基于表面法的结合,将可变壁属性分配给模型。我们最终使用理想化的圆柱形模型以及两个患有胸主动脉瘤和脑动脉瘤的特定于个体的血管模型来演示这些新方法。