Antiga Luca, Piccinelli Marina, Botti Lorenzo, Ene-Iordache Bogdan, Remuzzi Andrea, Steinman David A
Biomedical Engineering Department, Mario Negri Institute for Pharmacological Research, Villa Camozzi, Ranica, BG, Italy.
Med Biol Eng Comput. 2008 Nov;46(11):1097-112. doi: 10.1007/s11517-008-0420-1. Epub 2008 Nov 11.
We present a modeling framework designed for patient-specific computational hemodynamics to be performed in the context of large-scale studies. The framework takes advantage of the integration of image processing, geometric analysis and mesh generation techniques, with an accent on full automation and high-level interaction. Image segmentation is performed using implicit deformable models taking advantage of a novel approach for selective initialization of vascular branches, as well as of a strategy for the segmentation of small vessels. A robust definition of centerlines provides objective geometric criteria for the automation of surface editing and mesh generation. The framework is available as part of an open-source effort, the Vascular Modeling Toolkit, a first step towards the sharing of tools and data which will be necessary for computational hemodynamics to play a role in evidence-based medicine.
我们提出了一个为在大规模研究背景下进行患者特异性计算血液动力学而设计的建模框架。该框架利用了图像处理、几何分析和网格生成技术的整合,重点在于完全自动化和高级交互。图像分割使用隐式可变形模型,利用一种用于血管分支选择性初始化的新方法以及一种用于小血管分割的策略。中心线的稳健定义为表面编辑和网格生成的自动化提供了客观的几何标准。该框架作为开源项目血管建模工具包的一部分可用,这是朝着共享工具和数据迈出的第一步,而这些工具和数据对于计算血液动力学在循证医学中发挥作用是必不可少的。